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Pattern mining, one of the most important problems in data mining, involves
finding existing patterns in data. This article provides a survey of the available
literature on a variant of pattern mining, namely erasable itemset (EI) mining. EI
mining was first presented in 2009 and META is the first algorithm to solve this
problem. Since then, a number of algorithms, such as VME, MERIT, and dMERIT+,
have been proposed for mining EI. MEI, proposed in 2014, is currently the best
algorithm for mining EIs. In this study, the META, VME, MERIT, dMERIT+, and
MEI algorithms are described and compared in terms of mining time and memory
usage. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Problems related to data mining, including
association rule mining,1–6 applications of

association rule mining,7–9 cluster analysis,10 and
classification,11–13,55 have attracted research atten-
tion. In order to solve these problems, the problem
of pattern mining14 must be first addressed. Fre-
quent itemset mining is the most common problem
in pattern mining. Many methods for frequent item-
set mining have been proposed, such as Apriori
algorithm,1 FP-tree algorithm,15 methods based
on IT-tree,5,16 hybrid approaches,17 and methods
for mining frequent itemsets and association rules
in incremental datasets.11,18–24 Studies related to
pattern mining include those on frequent closed
itemset mining,25,26 high-utility pattern mining,27–30

the mining of discriminative and essential frequent
patterns,31 approximate frequent pattern mining,32

concise representation of frequent itemsets,33 pro-
portional fault-tolerant frequent itemset mining,34

frequent pattern mining of uncertain data,35–39
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frequent-weighted itemset mining,40,41 and erasable
itemset (EI) mining.42–48

In 2009, Deng et al. defined the problem of
EI mining, which is a variant of pattern mining.
The problem originates from production planning
associated with a factory that produces many types
of products. Each product is created from a number
of components (items) and creates profit. In order to
produce all the products, the factory has to purchase
and store these items. In a financial crisis, the factory
cannot afford to purchase all the necessary items
as usual; therefore, the managers should consider
their production plans to ensure the stability of the
factory. The problem is to find the itemsets that can be
eliminated but do not greatly affect the factory’s profit,
allowing managers to create a new production plan.

Assume that a factory produces n products.
The managers plan new products; however, producing
these products requires a financial investment, but
the factory does not want to expand the current
production. In this situation, the managers can use EI
mining to find EIs, and then replace them with the
new products while keeping control of the factory’s
profit. With EI mining, the managers can introduce
new products without causing financial instability.

In recent years, several algorithms have been
proposed for EI mining, such as META (Min-
ing Erasable iTemsets with the Anti-monotone
property),44 VME (Vertical-format-based algorithm
for Mining Erasable itemsets),45 MERIT (fast Mining
ERasable ITemsets),43 dMERIT+ (using difference
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of NC_Set to enhance MERIT algorithm),47 and
MEI (Mining Erasable Itemsets).46 This study out-
lines existing algorithms for mining EIs. For each
algorithm, its approach is described, an illustrative
example is given, and its advantages and disadvan-
tages are discussed. In the experiment section, the
performance of the algorithms is compared in terms
of mining time and memory usage. Based on the
experimental results, suggestions for future research
are given.

The rest of this study is organized as follows:
Section 2 introduces the theoretical basis of EI mining;
Section 3 presents META, VME, MERIT, dMERIT+,
and MEI algorithms; Section 4 compares and dis-
cusses the runtime and memory usage of these algo-
rithms;Section 5 gives the conclusion and suggestions
for future work.

RELATED WORK

Frequent Itemset Mining
Frequent itemset mining49 is an important problem
in data mining. Currently, there are a large number
of algorithms that effectively mine frequent itemsets.
They can be divided into three main groups:

1. Methods that use a candidate generate-and-test
strategy: these methods use a level-wise
approach for mining frequent itemsets. First,
they generate frequent 1-itemsets which are
then used to generate candidate 2-itemsets,
and so on, until no more candidates can be
generated. Apriori1 and BitTableFI50 are two
such algorithms.

2. Methods that adopt a divide-and-conquer strat-
egy: these methods compress the dataset into a
tree structure and mine frequent itemsets from
this tree using a divide-and-conquer strategy.
FP-Growth15 and FP-Growth*51 are two such
algorithms.

3. Methods that use a hybrid approach: these
methods use vertical data formats to compress
the database and mine frequent itemsets using
a divide-and-conquer strategy. Eclat,2 dEclat,26

Index-BitTableFI,52 DBV-FI,4 and Node-list-
based methods17,53 are some examples.

EI Mining
Let I= {i1, i2,… , im} be a set of all items, which are the
abstract representations of components of products. A
product dataset, DB, contains a set of products {P1,
P2,… , Pn}. Each product Pi is represented in the form

TABLE 1 An Example Dataset (DBe)

Product Items Val ($)

P1 a, b, c 2100

P2 a, b 1000

P3 a, c 1000

P4 b, c, e 150

P5 b, e 50

P6 c, e 100

P7 c, d, e, f , g 200

P8 d, e, f , h 100

P9 d, f 50

P10 b, f , h 150

P11 c, f 100

⟨Items, Val⟩, where Items are all items that constitute
Pi and Val is the profit that the factory obtains by
selling product Pi. A set X⊆ I is called an itemset, and
an itemset with k items is called a k-itemset.

The example product dataset in Table 1, DBe, is
used throughout this study, in which {a, b, c, d, e, f,
g, h} is the set of items (components) used to create
all products {P1, P2,… , P11}. For example, P2 is made
from two components, {a, b}, and the factory earns
1000 dollars by selling this product.

Definition 1. Let X (⊆I) be an itemset. The gain of X
is defined as:

g (X) =
∑

{ Pk| X Pk.Items ≠ }
Pk.Val (1)

The gain of itemset X is the sum of profits of
the products which include at least one item in itemset
X. For example, let X= {ab} be an itemset. From
DBe, {P1,P2, P3, P4, P5, P10} are the products which
include {a}, {b}, or {ab} as components. Therefore,
g(X)= P1·Val + P2·Val + P3·Val + P4·Val + P5·Val +
P10·Val=4450 dollars.

Definition 2. Given a threshold 𝜉 and a product
dataset DB, let T be the total profit of the factory, com-
puted as:

T =
∑

Pk ∈ DB

Pk.Val (2)

An itemset X is erasable if and only if:

g (X) ≤ T × 𝜉 (3)

The total profit of the factory is the sum of
profits of all products. From DBe, T =5000 dollars.
An itemset X is called an EI if g(X)≤T × 𝜉.
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For example, let 𝜉 =16%. The gain of item h,
g(h)=250 dollars. Item h is called an EI with 𝜉 = 16%
because g(h)=250≤5000× 16%= 800. This means
that the factory does not need to buy and store item h.
In that case, the factory will not manufacture products
P8 and P10, but it still has profitability (greater than or
equal to 5000*16%= 4000 dollars).

EXISTING ALGORITHMS FOR EI
MINING

This section introduces existing algorithms for
EI mining, namely META,44 VME,45 MERIT,43

dMERIT+,47 and MEI,46 which are summarized in
Table 2.

META Algorithm
Algorithm
In 2009, Deng et al. defined EIs, the problem of
EI mining, and the META algorithm, an iterative
approach that uses a level-wise search for EI min-
ing, which is also adopted by the Apriori algorithm
in frequent pattern mining. This approach also uses
the property: ‘if itemset X is inerasable and Y is a
superset of X, then Y must also be inerasable’ to
reduce the search space. The level-wise-based itera-
tive approach finds erasable (k+ 1)-itemsets by mak-
ing use of erasable k-itemsets. The details of the
level-wise-based iterative approach are as follows.
First, the set of erasable 1-itemsets, E1, is found. Then,
E1 is used to find the set of erasable 2-itemsets E2,
which is used to find E3, and so on, until no more
erasable k-itemsets can be found. The finding of each
Ej requires one scan of the dataset. The details of
META are given in Figure 1.

An Illustrative Example
Consider DBe with 𝜉 = 16%. First, META determines
T = 5000 dollars and erasable 1-itemsets E1 = {e, f , d,
h, g}, with their gains shown in Table 3.

Then, META calls the Gen_Candidate func-
tion with E1 as a parameter to create E2, calls the
Gen_Candidate function with E2 as a parameter to
create E3, and calls the Gen_Candidate function with
E3 as a parameter to create E4. E4 cannot create any
EIs of E5; therefore, META stops. E2, E3, and E4 are
shown in Tables 4, 5 and 6, respectively.

DISCUSSION

The results of META are all EIs. However, the mining
time of this algorithm is long because:

TABLE 2 Summary of Existing Algorithms for Mining EIs

Algorithm Year Approach

META 2009 Apriori-like

VME 2010 PID_List-structure-based

MERIT 2012 NC_Set-structure-based

dMERIT+ 2013 dNC_Set-structure-based

MEI 2014 dPidset-structure-based

FIGURE 1 | META algorithm.

TABLE 3 Erasable 1-Itemsets E1 and their Gains for DBe

Erasable 1-itemsets Val ($)

E 600

F 600

D 350

H 250

G 200

1. META scans the dataset the first time to deter-
mine the total profit of the factory and n times to
determine the information associated with each
EI, where n is the maximum level of the result of
EIs.

2. To generate candidate itemsets, META uses a
naïve strategy, in which an erasable k-itemset
X is considered with all remaining erasable
k-itemsets used to combine and generate
erasable (k+ 1)-itemsets. Only a small num-
ber of all remaining erasable k-itemsets which
have the same prefix as that of X are combined.
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TABLE 4 Erasable 2-Itemsets E2 and their Gains for DBe

Erasable 2-itemsets Val ($)

Ed 650

Eh 750

Eg 600

Fd 600

Fh 600

Fg 600

Dh 500

Dg 350

Hg 450

For example, consider the erasable 3-itemset
{edh, edg, fhg, fdh, fdg, fhg, dhg}. META com-
bines the first element {edh} with all remaining
erasable 3-itemsets {edg, fhg, fdh, fdg, fhg, dhg}.
Only {edg} is used to combine with {edh}, and
{fhg, fdh, fdg, fhg, dhg} are redundant.

VME Algorithm
PID_List Structure
Deng and Xu45 proposed the VME algorithm for
EI mining. This algorithm uses a PID_List (a list

TABLE 5 Erasable 3-Itemsets E3 and their Gains for DBe

Erasable 3-itemsets Val ($)

Edh 800

Edg 650

Fhg 750

Fdh 600

Fdg 600

Fhg 600

Dhg 500

TABLE 6 Erasable 4-Itemsets E4 and their Gains for DBe

Erasable 4-itemsets Val ($)

edhg 800

fdhg 600

of product identifiers) structure. The basic concepts
associated with this structure are as follows.

Definition 3. The PID_List of 1-itemset A ∈ I is:

PIDs (A) = ∪
{ Pk| A Pk.Items ≠ }

Pk.ID, Pk.Val (4)

FIGURE 2 | VME algorithm.
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TABLE 7 Erasable 1-Itemsets E1 and their PID_Lists for DBe

Erasable

1-itemsets PID_Lists

e ⟨4, 150⟩, ⟨5, 50⟩, ⟨6, 100⟩, ⟨7, 200⟩, ⟨8, 100⟩
f ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
d ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩
h ⟨8, 100⟩, ⟨10, 150⟩
g ⟨7, 200⟩

Example 1. Considering DBe, PIDs(d)= {⟨7, 200⟩, ⟨8,
100⟩, ⟨9, 50⟩} and PIDs(h)= {⟨8, 100⟩, ⟨10, 150⟩}.
Theorem 1. Let XA and XB be two erasable
k-itemsets. Assume that PIDs(XA) and PIDs(XB) are
PID_Lists associated with XA and XB, respectively.
The PID_List of XAB is determined as follows:

PIDs (XAB) = PIDs (XA) PIDs (XB) (5)

Example 2. According to Example 1 and Theorem 1,
PIDs(dh)=PIDs(d) ∪ PIDs(h)= {⟨7, 200⟩, ⟨8, 100⟩, ⟨9,
50⟩} ∪ {⟨8, 100⟩, ⟨10, 150⟩}= {⟨7, 200⟩, ⟨8, 100⟩, ⟨9,
50⟩, ⟨10, 150⟩}.
Theorem 2. The gain of an itemset, X, can be com-
puted as follows:

g (X) =
n∑

j=1

PIDsj.Val (6)

Example 3. According to Example 2 and Theorem 2,
PIDs(dh)= {⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩};
therefore, g(dh)= 200+100+ 50+150=500 dollars.

Mining EIs Using PID_List Structure
Based on Definition 3, Theorem 1, and Theorem 2,
Deng and Xu45 proposed the VME algorithm for EI
mining, shown in Figure 2.

An Illustrative Example
Consider DBe with 𝜉 =16%. First, VME determines T
= 5000 dollars and erasable 1-itemsets E1 = {e, f , d, h,
g}, with their PID_Lists shown in Table 7.

Second, VME uses E1 to create E2, E2 to create
E3, and E3 to create E4. E4 does not create any EIs;
therefore, VME stops. E2, E3, and E4 are shown in
Tables 8, 9 and 10, respectively.

DISCUSSION

VME is faster than META. However, some weaknesses
associated with VME are:

TABLE 8 Erasable 2-Itemsets E2 and their PID_Lists for DBe

Erasable

2-itemsets PID_Lists

ed ⟨4, 150⟩, ⟨5, 50⟩, ⟨6, 100⟩, ⟨7, 200⟩, ⟨8, 100⟩,
⟨9, 50⟩

eh ⟨4, 150⟩, ⟨5, 50⟩, ⟨6, 100⟩, ⟨7, 200⟩, ⟨8, 100⟩,
⟨10, 150⟩

eg ⟨4, 150⟩, ⟨5, 50⟩, ⟨6, 100⟩, ⟨7, 200⟩, ⟨8, 100⟩,
fd ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
fh ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
fg ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
dh ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩
dg ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩
hg ⟨7, 200⟩, ⟨8, 100⟩, ⟨10, 150⟩

TABLE 9 Erasable 3-Itemsets E3 and their PID_Lists DBe

Erasable

3-itemset PID_Lists

edh ⟨4, 150⟩, ⟨5, 50⟩, ⟨6, 100⟩, ⟨7, 200⟩, ⟨8, 100⟩,
⟨9, 50⟩, ⟨10, 150⟩

edg ⟨4, 150⟩, ⟨5, 50⟩, ⟨6, 100⟩, ⟨7, 200⟩, ⟨8, 100⟩,
⟨9, 50⟩

fhg ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
fdh ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
fdg ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
fhg ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩
dhg ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩

TABLE 10 Erasable 4-Itemsets E4 and their PID_Lists DBe

Erasable

4-itemset PID_Lists

edhg ⟨4, 150⟩, ⟨5, 50⟩, ⟨6, 100⟩, ⟨7, 200⟩, ⟨8, 100⟩,
⟨9, 50⟩, ⟨10, 150⟩

fdhg ⟨7, 200⟩, ⟨8, 100⟩, ⟨9, 50⟩, ⟨10, 150⟩, ⟨11, 100⟩

1. VME scans the dataset to determine the total
profit of the factory and then scans the dataset
again to find all erasable 1-itemsets and their
PID_Lists. Scanning the dataset takes a lot of
time and memory. The dataset can be scanned
once only if carefully considered.

2. VME uses the breadth-first-search strategy,
in which all erasable (k− 1)-itemsets are used
to create erasable k-itemsets. Nevertheless,
classifying erasable (k− 1)-itemsets with the
same prefix as that of erasable (k− 2)-itemsets
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FIGURE 3 | WPPC-tree construction algorithm.

takes a lot of time and operations. For example,
the erasable 2-itemsets are {ed, eh, eg, fd, fh, fg,
dh, dg, hg}, which have four 1-itemset prefixes,
namely {e}, {f }, {d}, and {h}. The algorithm
divides the elements into groups of erasable
2-itemsets, which have the same prefix as that
of erasable 1-itemsets. In particular, the erasable
2-itemsets are classified into four groups: {ed,
eh, eg}, {fd, fh, fg}, {dh, dg}, and {hg}. Then, the
algorithm combines the elements of each group
to create the candidates of erasable 3-itemsets,
which are {edh, edg, fhg, fdh, fdg, fhg, dhg}.

3. VME uses the union strategy, in which X’s
PID_List is a subset of Y’s PID_List if X⊂Y.
This strategy requires a lot of memory and
operations for a large number of EIs.

4. VME stores each product’s profit (Val) in a pair
⟨PID, Val⟩ in PID_List. This leads to data dupli-
cation because a pair ⟨PID, Val⟩ can appear
in many PID_Lists. Therefore, this algorithm
requires a lot of memory. Memory usage can be
reduced by using an index of gain.

MERIT Algorithm
Deng and Wang,54 and Deng et al.53 presented
the WPPC-tree, an FP-tree-like structure. Then,
the authors created the N-list structure based on
WPPC-tree. Based on this idea, Deng et al.43 proposed
the NC_Set structure for fast mining EIs.

TABLE 11 DBe after Removal of 1-Itemsets (𝜉 = 16%) Which are
Not Erasable and Sorting of Remaining Erasable 1-Itemsets in
Ascending Order of Frequency

Product Items Val ($)

P4 e 150

P5 e 50

P6 e 100

P7 e, f , d, g 200

P8 e, f , d, h 100

P9 f , d 50

P10 f , h 150

P11 f 100

WPPC-tree

Definition 4. (WPPC-tree) A WPPC-tree, ℛ, is a tree
where the information stored at each node comprises
tuples of the form:

⟨
Ni.item-name,Ni.weight,Ni.childnodes,

× Ni.pre-order,Ni.post-order
⟩

(7)

where Ni·item-name is the item identifier, Ni·weight
and Ni·childnodes are the gain value and set of
child nodes associated with the item, respectively,
Ni·pre-order is the order number of the node when
the tree is traversed top-down from left to right,
and Ni·post-order is the order number of the node
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FIGURE 4 | Illustration of WPPC-tree construction process for DBe.

when the tree is traversed bottom-up from left to
right.

Deng and Xu43 proposed the WPPC-tree con-
struction algorithm to create a WPPC-tree shown in
Figure 3.

Consider DBe with 𝜉 = 16%. First, the algorithm
scans the dataset to find the erasable 1-itemsets (E1).
The algorithm then scans the dataset again and, for
each product, removes the inerasable 1-itemsets. The
remaining 1-itemsets are sorted in ascending order of
frequency, as shown in Table 11 (where P1 is removed
because it has no erasable 1-itemsets).

These itemsets are then used to construct a
WPPC-tree by inserting each item associated with
each product into the tree. Given the nine remaining
products, P4–P11, the tree is constructed in eight
steps, as shown in Figure 4. Note that in Figure 4
(apart from the root node), each node Ni represents
an item in I and each is labeled with the item
identifier (Ni·item-name) and the item’s gain value
(Ni·weight).

Finally, the algorithm traverses the WPPC-tree
to generate the pre-order and post-order numbers to
give a WPPC-tree of the form shown in Figure 5,
where each node Ni has been annotated with its
pre-order and post-order numbers (Ni·pre-order and
Ni·post-order, respectively).

NC_Set Structure

Definition 5. (node code) The node code of a node
Ni in the WPPC-tree, denoted by Ci, is a tuple of the
form:

Ci =
⟨

Ni.pre-order,Ni.post-order ∶ Ni.weight
⟩

(8)

FIGURE 5 | WPPC-tree for DBe with 𝜉 = 16%.

Theorem 3. A node code Ci is an ancestor of another
node code Cj if and only if Ci·pre-order ≤ Cj·pre-order
and Ci·post-order ≥ Cj·post-order.

Example 4. In Figure 5, the node code of the high-
lighted node N1 is ⟨1,4:600⟩, in which N1·pre-
order= 1, N1·post-order= 4, and N1·weight=600;
and the node code of N2 is ⟨5,1:100⟩. N1 is an ances-
tor of N2 because N1·pre-order=1<N2·pre-order=5
and N1·post-order=4>N2·post-order= 1.

Definition 6. (NC_Set of an erasable 1-itemset) Given
a WPPC-tree ℛ and a 1-itemset A, the NC_Set of
A, denoted by NCs(A), is the set of node codes in
ℛ associated with A sorted in descending order of
Ci·pre-order.

NCs (A) = ∪{∀Ni ∈ ℛ, Ni.item−name=A}Ci (9)

where Ci is the node code of Ni.

Example 5. According to ℛ in Figure 5,
NCs(e)= {⟨1,4:600⟩}, NCs(h)= {⟨5,1:100⟩, ⟨8,6:150⟩}
and NCs(d)= {⟨3,2:300⟩, ⟨7,5:50⟩}.
Definition 7. (complement of a node code set) Let XA
and XB be two EIs with the same prefix X (X can
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be an empty set). Assume that A is before B with
respect to E1 (the list of identified erasable 1-itemsets
ordered according to ascending order of frequency).
NCs(XA) and NCs(XB) are the NC_Sets of XA and
XB, respectively. The complement of one node code
set with respect to another is defined as follows:

NCs (XB) ∖NCs (XA) = NCs (XB) ∖

{Cj ∈ NCs (XB) | ∃Ci ∈ NCs (XA) ,

× Ci is an ancestor Cj} (10)

Example 6. NCs(h)\NCs(e)= {⟨5,1:100⟩, ⟨8,6:150⟩}
\{⟨1,4:600⟩}= {⟨5,1:100⟩, ⟨8,6:150⟩}\{⟨5,1:100⟩}= {⟨8,
6:150⟩}. Similarly, NC(d)\NC(e)= {⟨3,2:300⟩, ⟨7,5:
50⟩}\{⟨1,4:600⟩}= {⟨7,5:50⟩}.
Definition 8. (NC_Set of erasable k-itemset) Let XA
and XB be two EIs with the same prefix X. NCs(XA)
and NCs(XB) are the NC_Sets of XA and XB,
respectively. The NC_Set of XAB is determined as:

NCs (XAB) = NCs (XA) ∪
[
NCs (XB) ∖NCs (XA)

]
(11)

Example 7. According to Example 6 and Defi-
nition 8, the NC_Set of eh is NCs(eh)=NCs(e)
∪ [NCs(h)\NCs(e)]= {⟨1,4:600⟩}∪ {⟨8,6:150⟩}= {⟨1,4:
600⟩, ⟨8,6:150⟩} and the NC_Set of ed is NCs(ed)=
{⟨1,4:600⟩, ⟨7,5:50⟩}. Similarly, the NC_Set of
edh is NCs(edh)=NCs(ed) ∪ [NCs(eh)\NCs(ed)]=
{⟨1,4:600⟩, ⟨7,5:50⟩} ∪ [{⟨1,4:600⟩, ⟨8,6:150⟩}\{⟨1,4:
600⟩, ⟨7,5:50⟩}]= {⟨1,4:600⟩, ⟨7,5:50⟩, ⟨8,6:150⟩}.
Theorem 4. Let X be an itemset and NCs(X) be the
NC_Set of X. The gain of X is computed as follows:

g (X) =
∑

Ci∈ NCs(X)
Ci.weight (12)

Example 8. Based on Example 7, the NC_Set edh
is NCs(edh)= {⟨1,4:600⟩, ⟨7,5:50⟩, ⟨8,6:150⟩}. There-
fore, the gain of edh is g(edh)=600+ 50+ 150=800
dollars.

Efficient Method for Combining Two NC_Sets
To speed up the runtime of EI mining, Deng and
Xu43 proposed an efficient method for combining two
NC_Sets, shown in Figure 6.

Mining EIs Using NC_Set Structure
Based on the above theoretical background, Deng and
Xu43 proposed an efficient algorithm for mining EIs,
called MERIT, shown in Figure 7.

MERIT+ Algorithm

Algorithm
MERIT has some problems which cause the loss of a
large number of EIs:

1. MERIT uses an ‘if’ statement to check all
subsets of (k−1)-itemsets of a k-itemset X to
determine whether they are erasable to avoid
executing the procedure NC_Combination.
However, MERIT uses the deep-first-search
strategy so there are not enough (k− 1)-itemsets
in the results for this check. The ‘if’ statement
is always false, so all erasable k-itemsets (k> 2)
are always inerasable. The results of MERIT are
thus erasable 1-itemsets and erasable 2-itemsets.
Once X’s NC_Set is determined, the algorithm
can immediately decide whether X is erasable.
Hence, the if statement in this algorithm is
unnecessary.

2. MERIT enlarges the equivalence classes of
ECv[k]; therefore, the results of the algorithm
are not all EIs. This improves the mining time,
but not all EIs are mined.

Le et al.46,47 thus introduced a revised algorithm
called MERIT+, derived from MERIT, that is capable
of mining all EIs but does not: (1) check all subsets of
(k− 1)-itemsets of a k-itemset X to determine whether
they are erasable and (2) enlarge the equivalence
classes.

An Illustrative Example
To explain MERIT+, the process of the MERIT+ algo-
rithm for DBe with 𝜉 =16% is described below. First,
MERIT+ uses the WPPC-tree construction algorithm
shown in Figure 3 to create the WPPC-tree (Figure 5).
Next, MERIT+ scans this tree to generate the NC_Sets
associated with erasable 1-itemsets. Figure 8 shows E1
and its NC_Set.

Then, MERIT+ uses the divide-and-conquer
strategy for mining EIs. The result of this algorithm
is shown in Figure 9.

DISCUSSION

MERIT+ and MERIT still have three weaknesses:

1. They use the union strategy in which
NCs(X)⊂NCs(Y) if X⊂Y. As a result, their
memory usage is large for a large number of
EIs.

2. They scan the dataset three times to build the
WPPC-tree. Then, they scan the WPPC-tree
twice to create the NC_Set of erasable
1-itemsets. The previous steps take a lot of
time and operations.

3. They store the value of a product’s profit in each
NC of NC_Set, which leads to data duplication.
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FIGURE 6 | Efficient method for combining two NC_Sets.

FIGURE 7 | MERIT algorithm.

dMERIT+ Algorithm
Index of Weight

Definition 9. (index of weight) Let ℛ be a WPPC-
tree. The index of weight is defined as:

W
[
Nipre

]
= Niweight (13)

where Ni ∈ℛ is a node in ℛ.

The index of weight for ℛ shown in Figure 5 is
presented in Table 12. Note that the index for node Ni
is equivalent to its pre-order number (Ni·pre-order).
Using the index of weight, a new node code struc-
ture ⟨Ni·pre-order, Ni·post-order⟩, called NC′, and a
new NC_Set format (NC′_Set) are proposed (Le et al.,
2013). NC′ and NC′_Set make the dMERIT+ algo-
rithm efficient by reducing the memory requirements

and speeding up the weight acquisition process for
individual nodes.

Example 9. Consider the following:

1. In Example 8, NCs(edh)= {⟨1,4:600⟩, ⟨7,5:50⟩,
⟨8,6:150⟩}. Therefore, g(edh) = 600+50+ 150
=800 dollars.

2. The NC′_Set of edh is NC′s(edh)= {⟨1,4⟩, ⟨7,5⟩,
⟨8,6⟩}. From this NC′_Set, the dMERIT+ algo-
rithm can easily determine the gain of edh by
using the index of weight as follows: g(edh)
= W[1] + W[7] + W[8]=600+ 50+ 150=800
dollars.

Example 9 shows that using NC′_Sets lowers the
memory requirement for NC′ compared to that for
NC_Sets.
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FIGURE 8 | Erasable 1-itemsets, E1, and its NC_Sets for DBe with 𝜉 = 16%.

FIGURE 9 | Result of MERIT+ for DBe with 𝜉 = 16%.

dNC′_Set Structure

Definition 10. (dNC′_Set) Let XA with its NC′_Set,
NC′s(XA), and XB with its NC′_Set, NC′s(XB), be
two itemsets with the same prefix X (X can be an
empty set). The difference NC′_Set of NC′s(XA) and
NC′s(XB), denoted by dNC′s(XAB), is defined as
follows:

dNC′s (XAB) = NC′s (XB) ∖NC′s (XA) (14)

Example 10. dNC′s(eh)=NC′s(h)\NC′s(e)= {⟨5,1⟩,
⟨8,6⟩}\{⟨1,4⟩}= {⟨8,6⟩} and dNC′s(ed)=NC′s(d)\NC′

s(e)= {⟨7,5⟩}.
Theorem 5. Let XA with its dNC′_Set, dNC’s(XA),
and XB with its dNC′_Set, dNC’s(XB), be two item-
sets with the same prefix X (X can be an empty set).
The dNC′_Set of XAB can be computed as:

dNC′s (XAB) = dNC′s (XB) ∖dNC′s (XA) (15)

Example 11. According to Example 7, NC′s(eh)
= {⟨1,4⟩, ⟨8,6⟩} and NC′s(ed)= {⟨1,4⟩, ⟨7,5⟩}.
Therefore, dNC′s(edh)=NC′s(eh)\NC′s(ed)=
{⟨1,4⟩, ⟨8,6⟩}\{⟨1,4⟩, ⟨7,5⟩}= {⟨8,6⟩}.

According to Example 10, dNC′s(eh)=NC′s(h)
NC′s(e)= {⟨8,6⟩} and dNC′s(ed)=NC′s(d) NC′s
(e)= {⟨7,5⟩}. Therefore, dNC′s(edh)= dNC′s(eh)
dNC′s(ed)= {⟨8,6⟩} {⟨7,5⟩}= {⟨8,6⟩}.

From (1) and (2), dNC′s(edh)= {⟨8,6⟩}. There-
fore, Theorem 5 is verified through this example.

Theorem 6. Let the gain (weight) of XA be g(XA).
Then, the gain of XAB, g(XAB), is computed as
follows:

g (XAB) = g (XA) +
∑

Ci∈ dNC′(XAB)
W

[
Ci.pre

]
(16)

where W[Ci. pre] is the element at position Ci. pre in
W.

Example 12. Consider the following:

1. According to Example 8, g(edh)= 800 dollars.

2. NC′s(e)= {⟨1,4⟩}, NC′s(d)= {⟨3,2⟩, ⟨7,5⟩} and
NC′s(h)= {⟨5,1⟩, ⟨8,6⟩}. Therefore, g(e) = 600,
g(d) = 350 and g(h) = 250.

– According to Example 10, dNC′s(ed)= {⟨7,5⟩}
and dNC′s(eh)= {⟨8,6⟩}. Therefore, g(ed) = g(e) +
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TABLE 12 Index of Weight for DBe with 𝜉 = 16%

Pre-order 1 2 3 4 5 6 7 8

Weight 600 300 300 200 100 300 50 150

W[7]=600+ 50= 650 dollars and g(eh) =g(e) +
W[8]=600+ 150= 750 dollars.

– According to Example 11, dNC′s(edh)=
{⟨8,6⟩}. Therefore, g(edh) = g(ed) + W[8]=650+ 150
=800 dollars.

From (1) and (2), g(edh)=800 dollars. There-
fore, Theorem 6 is verified through this example.

Theorem 7. Let XA with its NC′_Set, NC’s(XA), and
XB with its NC′_Set, NC’s(XB), be two itemsets with
the same prefix X. Then:

dNC′s (XAB) ⊂ NC′s (XAB) (17)

Example 13. Consider the following:

1. Based on Example 7, the NC′_Set of edh is
NC′s(edh)= {⟨1,4⟩, ⟨7,5⟩, ⟨8,6⟩}.

2. Based on Example 11, the dNC′_Set of edh is
dNC′s(edh)= {⟨8,6⟩}.

Obviously, dNC′s(edh)= {⟨8,6⟩} ⊂ NC′s(edh)=
{⟨1,4⟩, ⟨7,5⟩, ⟨8,6⟩}. Therefore, Theorem 7 is verified
through this example.

With an itemset XAB, Theorem 7 shows that
using a dNC′_Set is always better than using an
NC′_Set. The dMERIT+ algorithm requires less mem-
ory and has a faster runtime than those of MERIT+
because there are fewer elements in a dNC′_Set than
in an NC’_Set.

Efficient Method for Subtracting Two NC’_Sets
To speed up the runtime of EI mining, Le et al.47 pro-
posed an efficient method for determining the differ-
ence NC’_Set of two dNC’_Sets, shown in Figure 10.

Mining EIs Using dNC’_Set Structure
Based on the above theoretical background, Le
et al.47 proposed the dMERIT+ algorithm, shown in
Figure 11.

An Illustrative Example
Consider DBe with 𝜉 = 16%. First, dMERIT+ calls
the WPPC-tree construction algorithm presented in
Figure 3 to create the WPPC_tree, ℛ (see Figure 5),
and then identifies the erasable 1-itemsets E1 and the
total gain for the factory T. The Generate_NC′_Sets

FIGURE 10 | Efficient method for subtracting two dNC’_Sets.

procedure is then used to create NC′_Sets associated
with E1 (see Figure 12).

The Mining_E procedure is then called with
E1 as a parameter. The first erasable 1-itemset {e}
is combined in turn with the remaining erasable
1-itemsets {f , d, h, g} to create the 2-itemset child
nodes: {ef , ed, eh, eg}. However, {ed} is excluded
because g({ef })= 900>T × 𝜉 = 800 dollars. Therefore,
the erasable 2-itemsets of node {e} are {ed, eh, eg}
(Figure 13).

The algorithm adds {ed, eh, eg} to the results
and uses them to call the Mining_E procedure to
create the erasable 3-itemset descendants of node {e}.
The first of these, {ed}, is combined in turn with the
remaining elements {eh, eg} to produce the erasable
3-itemsets {edh, edg}. Next, the erasable 3-itemsets of
node {ed} are used to create erasable 4-itemset {edhg}.
Similarity, the node {eh}, the second element of the set
of erasable 2-itemset child nodes of {e}, is combined
in turn with the remaining elements to give {ehg}. The
erasable 3-itemset descendants of node {e} are shown
in Figure 14.

The algorithm continues in this manner until
all potential descendants of the set of erasable
1-itemsets have been considered. The result is shown
in Figure 15.

When considering the memory usage associated
with the MERIT+ and dMERIT+ algorithms, the
following can be observed:

1. The memory usage can be determined by
summing either: (a) the memory required to
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FIGURE 11 | dMERIT+ algorithm.

FIGURE 12 | Erasable 1-itemsets and their NC′_Set for DBe with 𝜉 = 16%.

FIGURE 13 | Erasable 2-itemsets of node {e} for DBe with 𝜉 = 16%.

store EIs, their dNC′_Sets, and the index of
weight (dMERIT+ algorithm) or (b) the mem-
ory required to store EIs and their NC_Sets
(MERIT+ algorithm).

2. Ni·pre-order, Ni·post-order, Ni·weight, the item
identifier, and the gain of an EI are represented

in an integer format, which requires 4 bytes in
memory.

The number of items included in dMERIT+’s
output (see Figure 15) is 101. In addition, dMERIT+
also requires an array with eight elements as the index
of weight. Therefore, the memory usage required
by dMERIT+ is (101+ 8)× 4=436 bytes. For the
MERIT+ algorithm, the number of EIs and the num-
ber of associated NC_Sets (see Figure 9) is 219.
Hence, the memory usage required by MERIT is
219× 4=876 bytes. Thus, this example shows that
the memory usage for dMERIT+ is less than that for
MERIT+.
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FIGURE 14 | EIs of node {e} for DBe with 𝜉 = 16%.

MEI Algorithm
Index of Gain

Definition 11. (index of gain) Let DB be the product
dataset. An array is defined as the index of gain as:

G [i] = Pi.Val (18)

where Pi ∈DB for 1≤ i≤n.

According to Definition 11, the gain of a product
Pi is the value of the element at position i in the index
of gain.

For DBe, the index of gain is shown in Table 13.
For example, the gain of product P4 is the value of
the element at position 4 in G denoted by G[4] = 150
dollars.

Pidset—The Set of Product Identifiers

Definition 12. (pidset) For an itemset X, the set of
product identifiers p(X) is denoted as follows:

p (X) = ∪
A ∈ X

p (A) (19)

where A is an item in X and p(A) is the pidset of item
A, i.e., the set of product identifiers which includes A.

Definition 13. (gain of an itemset based on pidset) Let
X be an itemset. The gain of X denoted by g(X) is
computed as follows:

g (X) =
∑

Pk ∈ p(X)
G
[
k
]

(20)

where G[k] is the element at position k of G.

Example 14. For DBe, p({a})= {1, 2, 3} because P1,
P2, and P3 include {a} as a component. Similarly,
p({b})= {1, 2, 4, 5, 10}. According to Definition 12, the
pidset of itemset X = {ab} is p(X) = p({a}) ∪ p({b})= {1,
2, 3} ∪ {1, 2, 4, 5, 10}= {1, 2, 3, 4, 5, 10}. The gain
of X is g(X) = G[1] + G[2] + G[3] + G[4] + G[5] +
G[10]=4450 dollars.

Theorem 8. Let X be a k-itemset and B be a 1-itemset.
Assume that the pidset of X is p(X) and that that of B
is p(B). Then:

p (XB) = p (X) p (B) (21)

Theorem 9. Let XA and XB be two itemsets with the
same prefix X. Assume that p(XA) and p(XB) are
pidsets of XA and XB, respectively. The pidset of XAB
is computed as follows:

p (XAB) = p (XB) p (XA) (22)

Example 15. For DBe, XA = {ab} with p(XA) = {1, 2,
3, 4, 5, 10} and XB = {ac} with p(XB)= {1, 2, 3, 4, 6,
7, 11}. According to Theorem 9, the pidset of itemset
XAB is p(XAB) = p(XBA) = p(XA) ∪ p(XB) = {1, 2,
3, 4, 5, 10} {1, 2, 3, 4, 6, 7, 11}= {1, 2, 3, 4, 5, 6, 7,
10, 11}.

FIGURE 15 | Complete set of erasable itemsets identified by dMERIT+ for DBe with 𝜉 = 16%.
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TABLE 13 Index of Gain for DBe

Index 1 2 3 4 5 6 7 8 9 10 11

Gain 2100 1000 1000 150 50 100 200 100 50 150 100

FIGURE 16 | Efficient algorithm for subtracting two dPidsets.

dPidset—The Difference Pidset of Two Pidsets

Definition 14. (dPidset) Let XA and XB be two item-
sets with the same prefix X. The dPidset of pidsets
p(XA) and p(XB), denoted as dP(XAB), is defined as
follows:

dP (XAB) = p (XB) ∖ p (XA) (23)

According to Definition 14, the dPidset of pid-
sets p(XA) and p(XB) is the product identifiers which
only exist on p(XB).

FIGURE 18 | Erasable 2-itemsets of node {e} for DBe with 𝜉 = 16%.

FIGURE 19 | Erasable 3-itemsets of node {ed} for DBe with
𝜉 = 16%.

Example 16. XA = {ab} with p(XA) = {1, 2, 3, 4,
5, 10} and XB = {ac} with p(XB)= {1, 2, 3, 4, 6, 7,
11}. Based on Definition 14, the dPidset of XAB is
dP(XAB) = p(XB) \ p(XA) = {1, 2, 3, 4, 6, 7, 11}\{1,
2, 3, 4, 5, 10}= {6, 7, 11}. Note that reversing the order
of XA and XB will get a different result. dP(XBA) =
p(XA) \ p(XB) = {5, 10}.

FIGURE 17 | MEI algorithm.
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FIGURE 20 | All EIs of node {e} for DBe with 𝜉 = 16%.

Theorem 10. Given an itemset XY with dPidset
dP(XY) and pidset p(XY):

dP (XY) ⊂ p (XY) (24)

Example 17. According to Example 15, p(XAB) =
p({abc})= {1, 2, 3, 4, 5, 6, 7, 10, 11}. According to
Example 16, dP(XAB) = dP({abc})= {6, 7, 11}. From
this result, dP(XAB) = {6, 7, 11} ⊂p(XAB) = {1,
2, 3, 4, 5, 6, 7, 8, 10, 11}. This example verifies
Theorem 10.

With an itemset XY, Theorem 10 shows that
using dPidset is always better than using pidset
because the algorithm will (1) use less memory and
(2) require less mining time due to fewer elements.

Theorem 11. Let XA and XB be two itemsets with the
same prefix X. Assume that dP(XA) and dP(XB) are
the dPidsets of XA and XB, respectively. The dPidset
of XAB is computed as follows:

dP (XAB) = dP (XB) ∖ dP (XA) (25)

Example 18. Let X = {a}, A = {b}, and B = {c} be three
itemsets. Then, p(X) = {1, 2, 3}, p(A) = {1, 2, 4, 5, 10},
and p(B) = {1, 3, 4, 6, 7, 11}.

1. According to Theorem 8, p(XA) = p(X) ∪ p(A)
= {1, 2, 3, 4, 5, 10} and p(XB) = p(X) ∪ p(B)=
{1, 2, 3, 4, 6, 7, 11}. Based on Definition 14, the
dPidset of XAB is dP(XAB) = p(XB) \ p(XA) =
{1, 2, 3, 4, 6, 7, 11}\{1, 2, 3, 4, 5, 10}= {6, 7, 11}.

2. According to Definition 14, dP(XA) =
p(A) \ p(X) = {4, 5, 10} and dP(XB) =
p(B) \ p(X) = {4, 6, 7, 11}. Based on Theorem
11, the dPidset of XAB is dP(XAB) =
dP(XB) \ dP(XA) = {4, 6, 7, 11}\{4, 5, 10}= {6,
7, 11}.

In (1) and (2), the dPidset of XAB is dP(XAB) =
{6, 7, 11}. This example verifies Theorem 11.

Theorem 12. Let XAB be an itemset. The gain of
XAB is determined based on that of XA as follows:

g (XAB) = g (XA) +
∑

Pk ∈ dP(XAB)
G
[
k
]

(26)

where g(XA) is the gain of X and G[k] is the
element at position k of G.

Example 19. According to Example 15, XA = {ab}
with p(XA) = {1, 2, 3, 4, 5, 10} and XB = {ac} with
p(XB) = {1, 2, 3, 4, 6, 7, 11}. Applying Definition 13
yields g(XA) = 4,450 dollars and g(XB) = 4,650.

1. Based on Theorem 9, p(XAB) = {1, 2, 3, 4, 5, 6,
7, 10, 11}. Thus, the gain of XAB is g(XAB) =
4850.

2. According to Definition 14, dP(XAB) =
p(XB) \ p(XA) = {1, 2, 3, 4, 6, 7, 11}
\{1, 2, 3, 4, 5, 10}= {6, 7, 11}. Therefore,
the gain of XAB based on Theorem 12 is
g (XAB) = g (XA) +

∑
Pk ∈ d(XAB)

G
[
k
]
= 4450 +

G[6] + G[7] + G[11]=4850.

FIGURE 21 | Tree of all EIs obtained by MEI for DBe with 𝜉 = 16%.
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FIGURE 22 | Tree of EIs obtained using pidset for DBe with 𝜉 = 16%.

FIGURE 23 | Tree of EIs obtained using dPidset without sorting erasable 1-itemsets for DBe with 𝜉 = 16%.

TABLE 14 Features of Synthetic Datasets Used in Experiments

Dataset1 No. Products No. Items Type of dataset

Accidents 340,183 468 Dense

Chess 3196 76 Dense

Connect 67,557 130 Dense

Mushroom 8124 120 Sparse

Pumsb 49,046 7,117 Dense

T10I4D100K 100,000 870 Sparse

1These databases are available at http://sdrv.ms/14eshVm

In (1) and (2), the gain of XAB is 4850 dollars.
This example verifies Theorem 12.

Theorems 11 and 12 allow MEI to store the
dPidset of erasable k-itemsets (k≥ 2) and easily deter-
mine the gain of erasable k-itemsets. MEI scans the
dataset to create erasable 1-itemsets and their pidsets.
Then, MEI combines all erasable 1-itemsets together
to create erasable 2-itemsets and their dPidsets accord-
ing to Definition 14. From erasable k-itemsets (k≥2),

MEI uses Theorem 11 to determine their dPidsets and
uses Theorem 12 to compute their gains.

Theorem 13. Let A and B be two 1-itemsets. Assume
that their pidsets are p(A) and p(B), respectively. If
|p(A)|> |p(B)|, then:

||dP (AB)|| < ||dP (BA)|| (27)

Example 20. Let A = {a}, B = {b} be two itemsets.
Based on DBe, p(A) = {1, 2, 3} and p(B) = {1, 2, 4,
5, 10}. Then:

1. dP(AB) = p(B) \ p(A) = {1, 2, 4, 5, 10}\{1, 2,
3}= {4, 5, 10}.

2. dP(BA) = p(A) \ p(B) = {1, 2, 3}\{1, 2, 4, 5,
10}= {3}.

From (1) and (2), the size of dP(AB) is larger
than that of dP(BA). This example verifies Theorem
13.
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FIGURE 24 | Mining time for Accidents dataset.

FIGURE 25 | Mining time for Chess dataset.

Theorem 13 shows that subtracting pidset
d2from pidset d1 with |d1|> |d2| is always better in
terms of memory usage and mining time compared
to the reverse (subtracting pidset d2 from pidset d1
with |d1|< |d2|). Therefore, sorting erasable 1-itemsets
in descending order of their pidset size before com-
bining them together improves the algorithm. From
the above analysis, MEI sorts erasable 1-itemsets in
descending order of their pidset size.

Theorem 14. Let XA and XB be two EIs with
dPidsets dP(XA) and dP(XB), respectively. If

|dP(XA)|> |dP(XB)|, then:

||dP (XAB)|| < ||dP (XBA)|| (28)

Example 21. Let XA = {ab} with dP(XA) = {4, 5, 10}
and XB = {ac} with dP(XB) = {4, 6, 7, 11}. Then:

1. dP(XAB) = dP(XB) \ dP(XA) = {4, 6, 7, 11}\{4,
5, 10}= {6, 7, 11}.

2. dP(XBA) = dP(XA) \ dP(XB) = {4, 5, 10}\{4, 6,
7, 11}= {5, 10}.

FIGURE 26 | Mining time for Connect dataset.
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FIGURE 27 | Mining time for Mushroom dataset.

FIGURE 28 | Mining time for Pumsb dataset.

From (1) and (2), the size of dP(XBA) is smaller
than that of dP(XAB). This example verifies Theorem
14.

Theorem 14 shows that subtracting dPidset
d2 from dPidset d1 with |d1|> |d2| is always better
in terms of memory usage compared to the reverse.
Thus, sorting erasable k-itemsets (k>1) in descending
order of their dPidset size helps the algorithm opti-
mize memory usage. However, Theorem 13 sorts
erasable 1-itemsets in descending order of their pidset
size. Hence, in most cases, the dPidsets of erasable
k-itemsets (k> 1) are randomly sorted (see Section

named “An illustrative example” for illustration). In
these cases, this arrangement increases mining time.
Therefore, MEI does not sort erasable k-itemsets
(k> 1).

Effective Method for Subtracting Two dPidsets
In the conventional method, when subtracting dPidset
d2 with n elements from dPidset d1 with m elements,
the algorithm must consider every element in d2
regardless of whether it exists in d1. Therefore, the
complexity of this method is O(n×m). After obtaining
d3 with k elements, the algorithm has to scan all
elements in d3 to determine the gain of an itemset.

FIGURE 29 | Mining time for T10I4D100K dataset.
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FIGURE 30 | Memory usage for Accidents dataset.

FIGURE 31 | Memory usage for Chess dataset.

The complexity of this algorithm is thus O(n×m+ k).
The mining time of the algorithm is not significant
for the example dataset; however, it is very large
for large datasets. Therefore, an effective method for
subtracting two dPidsets is necessary.

In the process of scanning the dataset, MEI
finds erasable 1-itemset pidsets, which are sorted
in ascending order of the product identifiers. An
effective algorithm for subtracting two dPidsets
called Sub_dPidsets is proposed and shown in
Figure 16.

Mining EIs Using dPidset Structure
The MEI algorithm46 for mining EIs is shown in
Figure 17. First, the algorithm scans the product
dataset only one time to determine the total profit of
the factory (T), the index of gain (G), and the erasable
1-itemsets with their pidsets. A divide-and-conquer
strategy for mining EIs is proposed. First, with
erasable k-itemsets, the algorithm combines the first
element with the remaining elements in erasable
k-itemsets to create the erasable (k+ 1)-itemsets.
For elements whose gain is smaller than T × 𝜉, the
algorithm will (a) add them to the results of this
algorithm and then (b) combine them together to

create erasable (k+ 2)-itemsets. The algorithm uses
this strategy until all itemsets which can be created
from n elements of erasable 1-itemsets are considered.

An Illustrative Example
To demonstrate MEI, its implementation for DBe with
threshold 𝜉 = 16% is described. The algorithm has the
following four main steps:

1. MEI scans DBe to determine T = 5000 dollars,
the total profit of the factory, G, the index of
gain, and the erasable 1-itemsets {d, e, f , g, h}
with their pidsets.

2. The erasable 1-itemsets are sorted in descending
order of their pidset size. After sorting, the new
order of erasable 1-itemsets is {e, f , d, h, g}.

3. MEI puts all elements in the erasable 1-itemsets
into the results.

4. MEI uses the Expand_E procedure to imple-
ment the divide-and-conquer strategy. First, the
first element of erasable 1-itemsets {e} is com-
bined in turn with the remaining elements of
erasable 1-itemsets {f , d, h, g} to create erasable
2-itemsets of node {e}: {ef , ed, eh, eg}. However,

374 © 2014 John Wiley & Sons, Ltd. Volume 4, September/October 2014



WIREs Data Mining and Knowledge Discovery A survey of erasable itemset mining algorithms

FIGURE 32 | Memory usage for Connect dataset.

FIGURE 33 | Memory usage for Mushroom dataset.

{ef } is excluded because g(ef )=900 > T × 𝜉.
Therefore, the erasable 2-itemsets of node {e} are
{ed, eh, eg}, as illustrated in Figure 18.

The algorithm adds {ed, eh, eg}, the obtained
erasable 2-itemsets of node {e}, to the results and
uses them to call the Expand_E procedure to cre-
ate erasable 3-itemsets. {ed}, the first element of
the erasable 2-itemsets of node {e}, is combined
in turn with the remaining elements {eh, eg}.
The erasable 3-itemsets of node {ed} are {edh,
edg} because their gain is less than T × 𝜉. The
erasable 3-itemsets of node {ed} are illustrated in
Figure 19.

The algorithm is called recursively in depth-first
order until all EIs of node {e} are created. Figure 20
shows all EIs of node {e}.

Then, the algorithm continues to combine the
next element {f } with the remaining elements of
erasable 1-itemsets {d, h, g} to create the EIs of
node {f }. The algorithm repeats until all nodes are
considered. Then, the algorithm obtains the tree of all
EIs, as shown in Figure 21.

The memory usage for pidset and dPidset is
compared to show the effectiveness of using dPidset.

The EI tree obtained using the pidset strategy for DBe
for 𝜉 = 16% is shown in Figure 22.

According to Figure 22, using pidset leads to
data duplication. Assume that each product identifier
is represented as an integer (4 bytes in memory). The
size of pidsets in Figure 22 is 106× 4=424 bytes.
The algorithm with dPidset (Figure 21) only uses
21× 4=84 bytes. Therefore, the memory usage with
pidset is larger than that with dPidset.

The memory usage of the algorithm using dPid-
set with (see Figure 21) and without sorting pidsets
was determined. The tree of the EIs obtained using
dPidset without sorting for DBe with 𝜉 = 16% is
shown in Figure 23.

The algorithm is better with sorting erasable
1-itemsets than it is without, as discussed in Theorem
13. The algorithm using dPidset with sorting erasable
1-itemsets requires 21×4= 84 bytes (see Figure 21)
whereas that without sorting erasable 1-itemsets
requires 29× 4=116 bytes (see Figure 23). This
difference in memory usage is significant for real
datasets. In addition, reducing the memory usage also
speeds up the algorithm. Therefore, the algorithm
with sorting erasable 1-itemsets is better than that
without sorting erasable 1-itemsets.
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FIGURE 34 | Memory usage for Pumsb dataset.

FIGURE 35 | Memory usage for T10I4D100K dataset.

EXPERIMENTAL RESULTS

Experimental Environment
All experiments presented in this section were per-
formed on a laptop with an Intel Core i3-3110 M
2.4-GHz CPU and 4 GB of RAM. The operating sys-
tem was Microsoft Windows 8. All the programs were
coded in C# using Microsoft Visual Studio 2012 and
run on Microsoft .Net Framework Version 4.5.50709.

Experimental Datasets
The experiments were conducted on synthetic datasets
Accidents, Chess, Connect, Mushroom, Pumsb, and
T10I4D100K.a To make these datasets look like prod-
uct datasets, a column was added to store the profit
of products. To generate values for this column, a
function denoted by N(100,50) was created. For each
product, this function returned a value, with the mean
and variance of all values being 100 and 50, respec-
tively. In other words, this function created a random
value r (−50≤ r≤ 50), and returned 100+ r for this
value. The features of these datasets are shown in
Table 14.

Discussion
Because of the loss of EIs with MERIT, it is unfair
to compare MERIT to algorithms which mine all EIs

(VME, dMERIT+, and MEI) in terms of mining time
and memory usage. Therefore, MERIT+, derived from
MERIT (see Section 4.4), was implemented for mining
all EIs. The mining time and memory usage of VME,
MERIT+, dMERIT+, and MEI were compared. Note
that:

1. The mining time is the total execution time; i.e.,
the period between input and output.

2. The memory usage is determined by summing
the memory which stores: (1) EIs and their
dPidset (MEI), or (2) EIs, their NC_Set, and
the WPPC-tree (MERIT+), or (3) EIs, their
dNC’_Set, and the WPPC-tree (dMERIT+), or
(4) EIs and their PID_Lists (VME).

Mining Time
The mining time of MEI is always smaller than those
of VME and MERIT+ (Figures 24–29). This can be
explained primarily by the union PID_List strategy
of VME, the union NC_Set strategy of MERIT+,
the dNC_Set strategy of dMERIT+, and the dPidset
strategy of MEI. The union PID_List and NC_Set
strategies require a lot of memory and many opera-
tions, making the mining times of VME and MERIT+
long. The dNC_Set and dPidset strategies reduce the
number of operations and thus the mining time.
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For Accidents, Pumsb, and T10I4D100K
datasets, MERIT+ and dMERIT+ take a lot of time
to build the WPPC-tree. Therefore, the mining times
of MERIT+ and dMERIT+ are much larger than
that of MEI (see Figures 24, 28 and 29) for datasets
with a large number of items. For Chess, Connect,
Mushroom, and T10I4D100K, VME cannot run with
some thresholds (Figures 25–27 and 29). It can only
run with threshold=2% for Connect (Figure 26) and
cannot run with 0.155%≤ threshold≤0.175% for
T10I4D100K (Figure 29).

Memory Usage
VME and MERIT+ use the union strategy whereas
dMERIT+ and MEI use the difference strategy. The
memory usage associated with dMERIT+ and MEI is
much smaller than that of VME and MERIT+ (see
Figures 30–35). Because dMERIT+ and MEI reduce
memory usage, they can mine EIs with thresholds
higher than those possible for VME and MERIT+ for
datasets such as Chess (see Figure 31). dMERIT+ and
MEI can run with 45%<𝜉 ≤55% for Chess but VME
and MERIT+ cannot. In addition, VME cannot run
for some datasets (Figures 31–33 and 35) with high
thresholds.

From Figures 30–35, dMERIT+ and MEI have
the same memory usage. They both outperform VME
and MERIT+ in terms of memory usage and can mine
EIs with higher thresholds.

Discussions and Analysis
According to the experimental results in Section
4.5, dMERIT+ uses slightly less memory that
does MEI. Especially for Connect, dMERIT+ is

much better than MEI in terms of memory usage.
However, the memory usage difference between
dMERIT+ and MEI is not significant for most of
the tested datasets (Accidents, Chess, Pumsb, and
T10I4D100K). dMERIT+’s mining time is always
longer than MEI’s mining time. Therefore, MEI is the
best algorithm for mining EIs in terms of the mining
time for all datasets. Finally, it can be concluded that
META<VME<MERIT+<dMERIT+<MEI, where
A<B means that B is better than A in terms of the
mining time and memory usage. However, for cases
with limited memory, users should consider using
dMERIT+ instead of MEI.

CONCLUSIONS AND FUTURE WORK

This article reviewed the META, VME, MERIT,
dMERIT+, and MEI algorithms for mining EIs. The
theory behind each algorithm was described and
weaknesses were discussed. The approaches were
compared in terms of mining time and memory usage.
Based on the results, MEI is the best algorithm for
mining EIs. However, for cases with limited memory,
dMERIT+ should be used.

In future work, some issues related to EIs should
be studied, such as mining EIs from huge datasets,
mining top-rank-k EIs, mining closed/maximal EIs,
and mining EIs from incremental datasets. In addition,
how to mine rules from EIs and how to use EIs in
recommendation systems should be studied.

NOTE
a Downloaded from http://fimi.cs.helsinki.fi/data/
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