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Abstract—Mining high utility itemsets from a transactional database refers to the discovery of itemsets with high utility like profits.

Although a number of relevant algorithms have been proposed in recent years, they incur the problem of producing a large number of

candidate itemsets for high utility itemsets. Such a large number of candidate itemsets degrades the mining performance in terms of

execution time and space requirement. The situation may become worse when the database contains lots of long transactions or long

high utility itemsets. In this paper, we propose two algorithms, namely utility pattern growth (UP-Growth) and UP-Growth+, for mining

high utility itemsets with a set of effective strategies for pruning candidate itemsets. The information of high utility itemsets is

maintained in a tree-based data structure named utility pattern tree (UP-Tree) such that candidate itemsets can be generated

efficiently with only two scans of database. The performance of UP-Growth and UP-Growth+ is compared with the state-of-the-art

algorithms on many types of both real and synthetic data sets. Experimental results show that the proposed algorithms, especially UP-

Growth+, not only reduce the number of candidates effectively but also outperform other algorithms substantially in terms of runtime,

especially when databases contain lots of long transactions.

Index Terms—Candidate pruning, frequent itemset, high utility itemset, utility mining, data mining

Ç

1 INTRODUCTION

DATA mining is the process of revealing nontrivial,
previously unknown and potentially useful informa-

tion from large databases. Discovering useful patterns
hidden in a database plays an essential role in several data
mining tasks, such as frequent pattern mining, weighted
frequent pattern mining, and high utility pattern mining.
Among them, frequent pattern mining is a fundamental
research topic that has been applied to different kinds of
databases, such as transactional databases [1], [14], [21],
streaming databases [18], [27], and time series databases [9],
[12], and various application domains, such as bioinfor-
matics [8], [11], [20], Web click-stream analysis [7], [35], and
mobile environments [15], [36].

Nevertheless, relative importance of each item is not
considered in frequent pattern mining. To address this
problem, weighted association rule mining was proposed
[4], [26], [28], [31], [37], [38], [39]. In this framework, weights
of items, such as unit profits of items in transaction
databases, are considered. With this concept, even if some
items appear infrequently, they might still be found if they
have high weights. However, in this framework, the
quantities of items are not considered yet. Therefore, it

cannot satisfy the requirements of users who are interested in
discovering the itemsets with high sales profits, since the
profits are composed of unit profits, i.e., weights, and
purchased quantities.

In view of this, utility mining emerges as an important
topic in data mining field. Mining high utility itemsets from
databases refers to finding the itemsets with high profits.
Here, the meaning of itemset utility is interestingness,
importance, or profitability of an item to users. Utility of
items in a transaction database consists of two aspects:
1) the importance of distinct items, which is called external

utility, and 2) the importance of items in transactions, which
is called internal utility. Utility of an itemset is defined as the
product of its external utility and its internal utility. An
itemset is called a high utility itemset if its utility is no less
than a user-specified minimum utility threshold; otherwise,
it is called a low-utility itemset. Mining high utility itemsets
from databases is an important task has a wide range of
applications such as website click stream analysis [16], [25],
[29], business promotion in chain hypermarkets, cross-
marketing in retail stores [3], [10], [19], [30], [32], [33], online
e-commerce management, mobile commerce environment
planning [24], and even finding important patterns in
biomedical applications [5].

However, mining high utility itemsets from databases is
not an easy task since downward closure property [1] in
frequent itemset mining does not hold. In other words,
pruning search space for high utility itemset mining is
difficult because a superset of a low-utility itemset may be a
high utility itemset. A naı̈ve method to address this problem
is to enumerate all itemsets from databases by the principle
of exhaustion. Obviously, this method suffers from the
problems of a large search space, especially when databases
contain lots of long transactions or a low minimum utility
threshold is set. Hence, how to effectively prune the search
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space and efficiently capture all high utility itemsets with no
miss is a crucial challenge in utility mining.

Existing studies [3], [10], [16], [17], [19], [24], [29], [30]
applied overestimated methods to facilitate the performance
of utility mining. In these methods, potential high utility
itemsets (PHUIs) are found first, and then an additional
database scan is performed for identifying their utilities.
However, existing methods often generate a huge set of
PHUIs and their mining performance is degraded conse-
quently. This situation may become worse when databases
contain many long transactions or low thresholds are set.
The huge number of PHUIs forms a challenging problem to
the mining performance since the more PHUIs the algo-
rithm generates, the higher processing time it consumes.

To address this issue, we propose two novel algorithms
as well as a compact data structure for efficiently discover-
ing high utility itemsets from transactional databases. Major
contributions of this work are summarized as follows:

1. Two algorithms, named utility pattern growth (UP-
Growth) and UP-Growth+, and a compact tree
structure, called utility pattern tree (UP-Tree), for
discovering high utility itemsets and maintaining
important information related to utility patterns
within databases are proposed. High-utility itemsets
can be generated from UP-Tree efficiently with only
two scans of original databases.

2. Several strategies are proposed for facilitating the
mining processes of UP-Growth and UP-Growth+ by
maintaining only essential information in UP-Tree.
By these strategies, overestimated utilities of candi-
dates can be well reduced by discarding utilities of
the items that cannot be high utility or are not
involved in the search space. The proposed strate-
gies can not only decrease the overestimated utilities
of PHUIs but also greatly reduce the number of
candidates.

3. Different types of both real and synthetic data sets
are used in a series of experiments to compare the
performance of the proposed algorithms with the
state-of-the-art utility mining algorithms. Experimen-
tal results show that UP-Growth and UP-Growth+

outperform other algorithms substantially in terms of
execution time, especially when databases contain
lots of long transactions or low minimum utility
thresholds are set.

The rest of this paper is organized as follows: In
Section 2, we introduce the background and related work
for high utility itemset mining. In Section 3, the proposed
data structure and algorithms are described in details.

Experiment results are shown in Section 4 and conclusions
are given in Section 5.

2 BACKGROUND

In this section, we first give some definitions and define the
problem of utility mining, and then introduce related work
in utility mining.

2.1 Preliminary

Given a finite set of items I ¼ fi1; i2; . . . ; img, each item
ipð1 � p � mÞ has a unit profit prðipÞ. An itemset X is a set of
k distinct items fi1; i2; . . . ; ikg, where ij 2 I; 1 � j � k. k is
the length of X. An itemset with length k is called a k-
itemset. A transaction database D ¼ fT1; T2; . . . ; Tng contains
a set of transactions, and each transaction Tdð1 � d � nÞ has
a unique identifier d, called TID. Each item ip in transaction
Td is associated with a quantity qðip; TdÞ, that is, the
purchased quantity of ip in Td.

Definition 1. Utility of an item ip in a transaction Td is denoted
as uðip; TdÞ and defined as prðipÞ � qðip; TdÞ.

Definition 2. Utility of an itemset X in Td is denoted as
uðX;TdÞ and defined as

P
ip2X^X�Td uðip; TdÞ.

Definition 3. Utility of an itemset X in D is denoted as uðXÞ
and defined as

P
X�Td^Td2D uðX;TdÞ.

Definition 4. An itemset is called a high utility itemset if its
utility is no less than a user-specified minimum utility
threshold which is denoted as min_util. Otherwise, it is called
a low-utility itemset.

For example, in Tables 1 and 2,

uðfAg; T1Þ ¼ 5� 1 ¼ 5;

uðfADg;T1Þ ¼ uðfAg;T1Þ þ uðfDg;T1Þ ¼ 5þ 2 ¼ 7;

uðfADgÞ ¼ uðfADg; T1Þ þ uðfADg; T3Þ þ uðfADg; T6Þ
¼ 7þ 22þ 7 ¼ 36:

If min_util is set to 30, fADg is a high utility itemset.
Problem statement. Given a transaction database D and a

user-specified minimum utility threshold min_util, the
problem of mining high utility itemsets from D is to find
the complete set of the itemsets whose utilities are larger
than or equal to min_util.

After addressing the definitions about utility mining, we
introduce the transaction-weighted downward closure (TWDC)
which is proposed in [19].

Definition 5. Transaction utility of a transaction Td is denoted
as TUðTdÞ and defined as uðTd; TdÞ.

Definition 6. Transaction-weighted utility of an itemset X is
the sum of the transaction utilities of all the transactions
containing X, which is denoted as TWUðXÞ and defined asP

X�Td^Td2D TUðTdÞ.
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Profit Table



Definition 7. An itemset X is called a high-transaction-
weighted utility itemset (HTWUI) if TWUðXÞ is no less

than min_util.

Property 1 (Transaction-weighted downward closure.). For

any itemset X, if X is not a HTWUI, any superset of X is a

low utility itemset.

By Property 1, downward closure property can be
maintained in utility mining by applying the transaction-
weighted utility. For example, TUðT2Þ ¼ uðfACEGg;T2Þ ¼
27; TWUðfGgÞ ¼ TUðT2Þ þ TUðT5Þ ¼ 27þ 13 ¼ 40. If min_
util is set to 30, {G} is a HTWUI. However, if min_util is set to
50, fGg and its supersets are not HTWUIs since TWUðfGgÞ
must be no less than the TWUs of all fGg’s supersets.

2.2 Related Work

Extensive studies have been proposed for mining frequent
patterns [1], [2], [13], [14], [21], [22], [34], [40]. Among the
issues of frequent pattern mining, the most famous are
association rule mining [1], [13], [14], [21], [34], [40] and
sequential pattern mining [2], [22]. One of the well-known
algorithms for mining association rules is Apriori [1], which
is the pioneer for efficiently mining association rules from
large databases. Pattern growth-based association rule
mining algorithms [14], [21] such as FP-Growth [14] were
afterward proposed. It is widely recognized that FP-Growth
achieves a better performance than Apriori-based algo-
rithms since it finds frequent itemsets without generating
any candidate itemset and scans database just twice.

In the framework of frequent itemset mining, the
importance of items to users is not considered. Thus, the
topic called weighted association rule mining was brought to
attention [4], [26], [28], [31], [37], [38], [39]. Cai et al. first
proposed the concept of weighted items and weighted
association rules [4]. However, since the framework of
weighted association rules does not have downward
closure property, mining performance cannot be improved.
To address this problem, Tao et al. proposed the concept of
weighted downward closure property [28]. By using
transaction weight, weighted support can not only reflect
the importance of an itemset but also maintain the down-
ward closure property during the mining process. There are
also many studies [6], [26], [37] that have developed
different weighting functions for weighted pattern mining.

Although weighted association rule mining considers the
importance of items, in some applications, such as transac-
tion databases, items’ quantities in transactions are not
taken into considerations yet. Thus, the issue of high utility
itemset mining is raised and many studies [3], [5], [10], [16],
[17], [19], [24], [25], [29], [30], [32], [33] have addressed this
problem. Liu et al. proposed an algorithm named Two-
Phase [19] which is mainly composed of two mining phases.
In phase I, it employs an Apriori-based level-wise method
to enumerate HTWUIs. Candidate itemsets with length k

are generated from length k-1 HTWUIs, and their TWUs are
computed by scanning the database once in each pass. After
the above steps, the complete set of HTWUIs is collected in
phase I. In phase II, HTWUIs that are high utility itemsets
are identified with an additional database scan.

Although two-phase algorithm reduces search space by
using TWDC property, it still generates too many candi-
dates to obtain HTWUIs and requires multiple database
scans. To overcome this problem, Li et al. [17] proposed an
isolated items discarding strategy (IIDS) to reduce the
number of candidates. By pruning isolated items during
level-wise search, the number of candidate itemsets for
HTWUIs in phase I can be reduced. However, this
algorithm still scans database for several times and uses a
candidate generation-and-test scheme to find high utility
itemsets.

To efficiently generate HTWUIs in phase I and avoid
scanning database too many times, Ahmed et al. [3]
proposed a tree-based algorithm, named IHUP. A tree-
based structure called IHUP-Tree is used to maintain the
information about itemsets and their utilities. Each node of
an IHUP-Tree consists of an item name, a TWU value and a
support count. IHUP algorithm has three steps: 1) con-
struction of IHUP-Tree, 2) generation of HTWUIs, and
3) identification of high utility itemsets. In step 1, items in
transactions are rearranged in a fixed order such as
lexicographic order, support descending order or TWU
descending order. Then the rearranged transactions are
inserted into an IHUP-Tree. Fig. 1 shows the global IHUP-
Tree for the database in Table 1, in which items are
arranged in the descending order of TWU. For each node in
Fig. 1, the first number beside item name is its TWU and the
second one is its support count. In step 2, HTWUIs are
generated from the IHUP-Tree by applying FP-Growth [14].
Thus, HTWUIs in phase I can be found without generating
any candidate for HTWUIs. In step 3, high utility itemsets
and their utilities are identified from the set of HTWUIs by
scanning the original database once.

Although IHUP achieves a better performance than IIDS
and Two-Phase, it still produces too many HTWUIs in
phase I. Note that IHUP and Two-Phase produce the same
number of HTWUIs in phase I since they both use TWU
framework to overestimate itemsets’ utilities. However, this
framework may produce too many HTWUIs in phase I
since the overestimated utility calculated by TWU is too
large. Such a large number of HTWUIs will degrade the
mining performance in phase I substantially in terms of
execution time and memory consumption. Moreover, the
number of HTWUIs in phase I also affects the performance
of phase II since the more HTWUIs the algorithm generates
in phase I, the more execution time for identifying high
utility itemsets it requires in phase II.

As stated above, the number of generated HTWUIs is a
critical issue for the performance of algorithms. Therefore,
this study aims at reducing itemsets’ overestimated utilities
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Fig. 1. An IHUP-Tree when min util ¼ 40.



and proposes several strategies. By applying the proposed
strategies, the number of generated candidates can be
highly reduced in phase I and high utility itemsets can be
identified more efficiently in phase II.

3 PROPOSED METHODS

The framework of the proposed methods consists of three
steps: 1) Scan the database twice to construct a global UP-
Tree with the first two strategies (given in Section 3.1);
2) recursively generate PHUIs from global UP-Tree and
local UP-Trees by UP-Growth with the third and fourth
strategies (given in Section 3.2) or by UP-Growth+ with the
last two strategies (given in Section 3.3); and 3) identify
actual high utility itemsets from the set of PHUIs (given in
Section 3.4). Note that we use a new term “potential high
utility itemsets” to distinguish the patterns found by our
methods from HTWUIs since our methods are not based on
traditional TWU model. By our effective strategies, the set of
PHUIs will become much smaller than the set of HTWUIs.

3.1 The Proposed Data Structure: UP-Tree

To facilitate the mining performance and avoid scanning
original database repeatedly, we use a compact tree
structure, named UP-Tree, to maintain the information of
transactions and high utility itemsets. Two strategies are
applied to minimize the overestimated utilities stored in the
nodes of global UP-Tree. In following sections, the elements
of UP-Tree are first defined. Next, the two strategies are
introduced. Finally, how to construct an UP-Tree with the
two strategies is illustrated in detail by a running example.

3.1.1 The Elements in UP-Tree

In an UP-Tree, each node N consists of N.name, N.count,
N.nu, N.parent, N.hlink and a set of child nodes. N.name is
the node’s item name. N.count is the node’s support count.
N.nu is the node’s node utility, i.e., overestimated utility of
the node. N.parent records the parent node of N . N.hlink is a
node link which points to a node whose item name is the
same as N.name.

A table named header table is employed to facilitate the
traversal of UP-Tree. In header table, each entry records an
item name, an overestimated utility, and a link. The link
points to the last occurrence of the node which has the same
item as the entry in the UP-Tree. By following the links in
header table and the nodes in UP-Tree, the nodes having
the same name can be traversed efficiently.

In following sections, two strategies for decreasing the
overestimated utility of each item during the construction of
a global UP-Tree are introduced.

3.1.2 Strategy DGU: Discarding Global Unpromising

Items during Constructing a Global UP-Tree

The construction of a global UP-Tree can be performed with
two scans of the original database. In the first scan, TU of
each transaction is computed. At the same time, TWU of
each single item is also accumulated. By TWDC property,
an item and its supersets are unpromising to be high utility
itemsets if its TWU is less than the minimum utility
threshold. Such an item is called an unpromising item.

Definition 8 gives a formal definition of what are

unpromising items and promising items.

Definition 8. An item ip is called a promising item if

TWUðipÞ � min util. Otherwise it is called an unpromising

item. Without loss of generality, an item is also called a

promising item if its overestimated utility (which is different

from TWU in this paper) is no less than min_util. Otherwise it

is called an unpromising item.

Property 2 (Antimonotonicity of unpromising items). If iu
is an unpromising item, iu and all its supersets are not high

utility itemsets.

Proof. Since iu is an unpromising item, its overestimated

utility, denoted as OEUðiuÞ, is less than min_util. Also, it

is obvious that uðiuÞ � OEUðiuÞ. Thus uðiuÞ < min util,

that is, iu is not a high utility itemset. Assume that the set

of supersets of iu is denoted as SETu and the set of

transactions containing an item x is denoted as Tx. For

each itemset iu’ in SETu, Ti0u � Tiu . Thus, OEUði0uÞ �
OEUðiuÞ. By the above inferences, we get uði0uÞ �
OEUði0uÞ � OEUðiuÞ < min util. Therefore, each superset

of iu is not a high utility itemset. tu
Corollary 1. Only the supersets of promising items are possible

to be high utility itemsets.

During the second scan of database, transactions are

inserted into a UP-Tree. When a transaction is retrieved, the

unpromising items should be removed from the transaction

and their utilities should also be eliminated from the

transaction’s TU according to Property 2 and Corollary 1.

This concept forms our first strategy.
Strategy 1. DGU: Discarding global unpromising items

and their actual utilities from transactions and transaction

utilities of the database.
Rationale. By Property 2 and Corollary 1, we can realize

that unpromising items play no role in high utility itemsets.

Thus, when utilities of itemsets are being estimated, utilities

of unpromising items can be regarded as irrelevant and be

discarded.
New TU after pruning unpromising items is called

reorganized transaction utility (RTU). RTU of a reorganized

transaction Tr is denoted as RTUðTrÞ. By reorganizing the

transactions, not only less information is needed to be

recorded in UP-Tree, but also smaller overestimated

utilities for itemsets are generated. Strategy DGU uses

RTU to overestimate the utilities of itemsets instead of

TWU. Since the utilities of unpromising items are excluded,

RTU must be no larger than TWU. Therefore, the number of

PHUIs with DGU must be no more than that of HTWUIs

generated with TWU [3], [19]. DGU is quite effective

especially when transactions contain lots of unpromising

items, such as those in sparse data sets. Besides, DGU can

be easily integrated into TWU-based algorithms [3], [19].

Moreover, before constructing an UP-Tree, DGU can be

performed repeatedly till all reorganized transactions

contain no global unpromising item. By performing DGU

for several times, the number of PHUIs will be reduced;

however, it needs several database scans.
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3.1.3 Strategy DGN: Decreasing Global Node Utilities

during Constructing a Global UP-Tree

It is shown in [3] that the tree-based framework for high
utility itemset mining applies the divide-and-conquer
technique in mining processes. Thus, the search space can
be divided into smaller subspaces. For example, in Fig. 1, the
search space can be divided into the following subspaces:

1. {B}’s conditional tree (abbreviated as {B}-Tree),
2. {A}-Tree without containing {B},
3. {D}-Tree without containing {B} and {A},
4. {C}-Tree without containing {B}, {A}, and {D}, and
5. {E}-Tree without containing {B}, {A}, {D}, and {C}.

It can be observed that in the subspace {A}-Tree, all paths
are not related to {B} since the nodes {B} are below the nodes
{A} in global IHUP-Tree. In other words, the items that are
descendant nodes of the item im will not appear in fimg-
Tree; only the items that are ancestor nodes of im will
appear in fimg-Tree. From this viewpoint, our second
proposed strategy for decreasing overestimated utilities is
to remove the utilities of descendant nodes from their node
utilities in global UP-Tree. The process is performed during
the construction of the global UP-Tree.

Strategy 2. DGN: Decreasing global node utilities for the
nodes of global UP-Tree by actual utilities of descendant
nodes during the construction of global UP-Tree.

Rationale. Let fi1; i2; . . . ; ing be an ordered list of promis-
ing items. Since items ikþ1; ikþ2; . . . ; in are not involved in ik-
Tree, they will not be contained in any PHUI generated
from ik-Tree. Their utilities can be discarded from node
utilities of the nodes about ik in global UP-Tree.

By applying strategy DGN, the utilities of the nodes that
are closer to the root of a global UP-Tree are further
reduced. DGN is especially suitable for the databases
containing lots of long transactions. In other words, the
more items a transaction contains, the more utilities can be
discarded by DGN. On the contrary, traditional TWU
mining model is not suitable for such databases since the
more items a transaction contains, the higher TWU is. In
following sections, we describe the process of constructing a
global UP-Tree with strategies DGU and DGN.

3.1.4 Constructing a Global UP-Tree by Applying DGU

and DGN

Recall that the construction of a global UP-Tree is per-
formed with two database scans. In the first scan, each
transaction’s TU is computed; at the same time, each 1-
item’s TWU is also accumulated. Thus, we can get
promising items and unpromising items. After getting all

promising items, DGU is applied. The transactions are
reorganized by pruning the unpromising items and sorting
the remaining promising items in a fixed order. Any
ordering can be used such as the lexicographic, support,
or TWU order. Each transaction after the above reorganiza-
tion is called a reorganized transaction. In the following
paragraphs, we use the TWU descending order to explain
the whole process since it is mentioned that the perfor-
mance of this order is the best in previous study [3].

Then a function Insert_Reorganized_Transaction is called
to apply DGN during constructing a global UP-Tree. Its
subroutine is shown in Fig. 2. When a reorganized
transaction t0j ¼ fi1; i2; . . . ; ingðik 2 I; 1 � k � nÞ is inserted
into a global UP-Tree, Insert_Reorganized_Transaction ðN; ixÞ
is called, where N is a node in UP-Tree and ix is an item in
t0jðix 2 t0j; 1 � x � nÞ. First, ðNR; i1Þ is taken as input, where
NR is the root node of UP-Tree. The node for i1, Ni1 , is found
or created under NR and its support is updated in
Line 1.Then DGN is applied in Line 2 by discarding the
utilities of descendant nodes under Ni1 , i.e., Ni2 to Nin .
Finally, in Line 3, (Ni1 , i2) is taken as input recursively.

An example is given to explain how to apply the two
strategies during the construction of a global UP-Tree.
Consider the transaction database in Table 1 and the profit
table in Table 2. Suppose min_util is 50. In the first scan of
database, TUs of all transactions and TWUs of distinct items
are computed. Five promising items, i.e., fAg : 93; fBg :
92; fCg : 99; fDg : 96 and fEg : 107, are sorted in the header
table by the descending order of TWU, that is, {E}, {C}, {D},
{A}, and {B}. Then the transactions are reorganized by
sorting promising items and subtracting utilities of un-
promising items from their TUs. The reorganized transac-
tions and their RTUs are shown in Table 3. Comparing
Tables 3 and 1, the RTUs of T2, T3, and T5 in Table 3 are less
than the TUs in Table 1 since the utilities of {F}, {G}, and {H}
have been removed by DGU.

After a transaction has been reorganized, it is inserted
into the global UP-Tree. When T01 ¼ fðC; 10ÞðD; 1ÞðA; 1Þg is
inserted, the first node NC is created with NC:item ¼ fCg
and NC:count ¼ 1. NC:nu is increased by RTUðT01Þ minus
the utilities of the rest items that are behind fCg in T01,
that is, NC:nu ¼ RTUðT01Þ � ðuðfDg;T01Þ þ uðfAg;T01ÞÞ ¼
17� ð2þ 5Þ ¼ 10. Note that it can also be calculated as
the sum of utilities of the items that are before item fDg
in T01; i:e:;NC:nu ¼ uðfCg;T01Þ ¼ 10. The second node ND is
created with ND:item ¼ fDg; ND:count ¼ 1 and ND:nu ¼
RTUðT01Þ-uðfAg;T01Þ ¼ 17� 5 ¼ 12. The third node NA is
created with NA:item ¼ fAg;NA:count ¼ 1 and NA:nu ¼
RTUðT01Þ ¼ 17.
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TABLE 3
Reorganized Transactions and Their RTUs



After inserting all reorganized transactions by the same

way, the global UP-Tree shown in Fig. 3 is constructed.

Comparing with the IHUP-Tree in Fig. 1, node utilities of

the nodes in UP-Tree are less than those in IHUP-Tree since

the node utilities are effectively decreased by the two

strategies DGU and DGN.

3.2 The Proposed Mining Method: UP-Growth

After constructing a global UP-Tree, a basic method for

generating PHUIs is to mine UP-Tree by FP-Growth [14].

However too many candidates will be generated. Thus,

we propose an algorithm UP-Growth by pushing two more

strategies into the framework of FP-Growth. By the

strategies, overestimated utilities of itemsets can

be decreased and thus the number of PHUIs can be further

reduced. In following sections, we first propose the two

strategies and then describe the process of UP-Growth in

detail by an example.

3.2.1 Strategy DLU: Discarding Local Unpromising

Items during Constructing a Local UP-Tree

The common method for generating patterns in tree-based

algorithms [3], [14] contains three steps: 1) Generate

conditional pattern bases by tracing the paths in the original

tree; 2) construct conditional trees (also called local trees in

this paper) by the information in conditional pattern bases;

and 3) mine patterns from the conditional trees. However,

strategies DGU and DGN cannot be applied into condi-

tional UP-Trees since actual utilities of items in different

transactions are not maintained in a global UP-Tree. We

cannot know actual utilities of unpromising items that need

to be discarded in conditional pattern bases unless an

additional database scan is performed.
To overcome this problem, a naı̈ve solution is to

maintain items’ actual utilities in each transaction into each

node of global UP-Tree. However, this is impractical since it

needs lots of memory space. In view of this, we propose two

strategies, named DLU and DLN, that are applied in the

first two mining steps and introduced in this and next

sections, respectively. For the two strategies, we maintain a

minimum item utility table to keep minimum item utilities for

all global promising items in the database.

Definition 9. Minimum item utility of item ip in database D,

denoted asmiuðipÞ, is ip’s utility in transaction Td if there does

not exist a transaction Td’ in D such that uðip; T 0dÞ < uðip; TdÞ.

For example, Table 4 shows the minimum item utility

table for global promising items of the database shown in

Table 1. Note that minimum item utilities of all items can be

collected during the first scan of original database.
Minimum item utilities are utilized to reduce utilities of

local unpromising items in conditional pattern bases

instead of exact utilities. An estimated value for each local

unpromising item is subtracted from the path utility of an

extracted path.

Definition 10. Path utility of a path p in im’s conditional

pattern base (abbreviated as fimg-CPB) is denoted as

puðp; fimg-CPBÞ and defined as Nim ’s node utility where p

is retrieved by tracing Nim in the UP-Tree.

For example, puð<ADC>; fBg-CPBÞ, which is the path

utility of the leftest path in Fig. 3 in {B}-CPB, is defined as

NB.nu, i.e., 10, in that path. By Definitions 9 and 10, assume

that there is a path p in fimg-CPB and UIfimg-CPB is the set of

unpromising items in fimg-CPB. Path utility of p in

fimg-CPB, i.e., puðp; fimg-CPBÞ, is recalculated and reduced

according to minimum item utilities as below:

puðp; fimg � CPBÞ
¼ Nim:nu�

X

8i2UIfimg-CPB^i�p
miuðiÞ � p:count; ð1Þ

where p. count is the support count of p in fimg-CPB.

Proof. Since UIim is the set of unpromising items in

fimg-CPB, by Corollary 1, the PHUIs generated from p

must not contain the items in UIim: Thus, the items in

UIim and their utilities can be ignored from p. By

Definition 9, ij’s actual utility in fimg-CPB (where

ij 2 UIim ) must be no less than miuðijÞ � p:count. Thus,

p’s estimated utility calculated by (1) must always be

larger than or equal to its real utility in fimg-CPB. tu

By (1), we can define the third proposed strategy for

decreasing utilities of local unpromising items in a local UP-

Tree as follows:
Strategy 3. DLU: Discarding local unpromising items and

their estimated utilities from the paths and path utilities of

conditional pattern bases by (1).
DLU can be recognized as local version of DGU. It

provides a simple but useful schema to reduce overestimated

utilities locally without an extra scan of original database.

3.2.2 Strategy DLN: Decreasing Local Node Utilities

during Constructing a Local UP-Tree

As mentioned in the Section 3.1.3, since fimg-Tree must not

contain the information about the items below im in the

original UP-Tree, we can discard the utilities of descendant

nodes related to im in the original UP-Tree while building

fimg-Tree. (Here, original UP-Tree means the UP-Tree which

is used to generate fimg-Tree.) Because we cannot know
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Fig. 3. A UP-Tree by applying strategies DGU and DGN.

TABLE 4
Minimum Item Utility Table



actual utilities of the descendant nodes, we use minimum
item utilities to estimate the discarded utilities.

Definition 11. Path utility of item ik in fimg-CPB is denoted
as puðik; fimg-CPBÞ and defined as the following equation:

puðik; fimg � CPBÞ ¼
X

8p�ik^p2fimg-CPB

puðik; fimg-CPBÞ: ð2Þ

Note that the paths discussed here are reorganized by
pruning unpromising items by DLU and resorted by a fixed
order. The paths are called reorganized paths. The reason for
forming reorganized paths is the same as forming reorga-
nized transactions when applying DGU. Assume that a
reorganized path p ¼ <N0i1 N

0
i2 . . . N0i0m> in fimg-CPB is

inserted into the path <Ni1 Ni2 . . . Ni0m> in fimg-Tree, where
m0 � m. For the node Nik in im-Tree, where 1 � k � m’,
Nik :nu is recalculated as below:

Nik :nunew ¼ Nik :nuold

þ puðp; fimgCPBÞ �
Xm0

j¼kþ1

miuðijÞ � p:count;

ð3Þ

where Nik :nuold is the node utility of Nik in fimg-Tree before
adding p. (If Nij to Nim0 have not been created in fimg-Tree,
node Nik is created and Nik :nuold is set as 0.)

Proof. Assume DNik stands for the set of descendant nodes
below the node Nik in fimg-Tree. Since the items in DNik

will not generate PHUIs with ik in fikg-Tree, their
utilities can be discarded from Nik :nu. By Definition 9, we
can know ij’s actual utility in p must be no less than
miuðijÞ � p:count, where kþ 1 � j � m� 1. Thus, the
node utility calculated by (3) must always be larger than
or equal to its real utility. tu

For example, consider the minimum item utility table in
Table 4. Assume a reorganized path <DC> with support
count 1 is inserted into a local UP-Tree. The node ND under
root node is created or updated. ND:nu is increased by
5�miuðCÞ �<DC>:count ¼ 5� 1� 1 ¼ 4. By (3), we can
define the fourth strategy for decreasing utilities of
descendant nodes in a local UP-Tree as follows.

Strategy 4. DLN: Decreasing Local Node utilities for the
nodes of local UP-Tree by estimated utilities of descendant
nodes by (3).

The same as DLU, DLN can be recognized as local
version of DGN. By the two strategies, overestimated

utilities for itemsets can be locally reduced in a certain
degree without losing any actual high utility itemset. The
whole process of UP-Growth with DLU and DLN will
be addressed in detail in the next section. Then a complete
example is given to explain it.

3.2.3 UP-Growth: Mining a UP-Tree by Applying DLU

and DLN

The process of mining PHUIs by UP-Growth is described as
follows: First, the node links in UP-Tree corresponding to
the item im, which is the bottom entry in header table, are
traced. Found nodes are traced to root of the UP-Tree to get
paths related to im. All retrieved paths, their path utilities
and support counts are collected into im’s conditional
pattern base.

A conditional UP-Tree can be constructed by two scans
of a conditional pattern base. For the first scan, local
promising and unpromising items are learned by summing
the path utility for each item in the conditional pattern base.
Then, DLU is applied to reduce overestimated utilities
during the second scan of the conditional pattern base.
When a path is retrieved, unpromising items and their
estimated utilities are eliminated from the path and its path
utility by (1). Then the path is reorganized by the
descending order of path utility of the items in the
conditional pattern base.

DLN is applied during inserting reorganized paths into a
conditional UP-Tree. Assume a reorganized path pj ¼
<Ni1 Ni2 . . . Nim0>, where Nik is the nodes in UP-Tree and
1 � k � m’. When Ni1 :item, i1, is inserted into the condi-
tional UP-Tree, the function

Insert Reorgnized PathðNR0 ; i1Þ;

as shown in Fig. 4, is called, where NR’ is root node of the
conditional UP-Tree. The node for i1, Ni1 , is found or
created under NR’ and its support is updated in Line 1.
Then DLN is applied in Line 2 by decreasing estimated
utilities of descendant nodes under Ni1 , i.e., Ni2 to Nim0 .
Finally in Line 3, (Ni1 , i2) is taken as input recursively.

The complete set of PHUIs is generated by recursively
calling the procedure named UP-Growth. Initially, UP-
Growth(TR;HR, null) is called, where TR is the global UP-
Tree and HR is the global header table. The procedure of
UP-Growth is shown in Fig. 5.

Now, we use an example to explain the process of UP-
Growth in detail. Consider the UP-Tree in Fig. 3. Suppose
min_util is 50. The algorithm starts from the bottom entry of
header table and considers item {B} first. By tracing all
{B}.hlinks, sum of {B}’s node utilities is calculated, that is,
nusumðfBgÞ ¼ 83. Thus, a new PHUI {B}:83 is generated and
{B}-CPB is constructed. By following {B}.hlink, the nodes
related to {B} are found. By tracing these nodes to root, four
paths <ADC> : 10, <DCE> : 30, <CE> : 11, and <ADE> :
32 are found. The number beside a path is path utility of the
path, which equals to {B}.nu in each traversed path. These
paths are collected into {B}-CPB, which is shown in the first
column of Table 5.

Consider {B}-CPB and the minimum item utility table in
Table 4. By scanning {B}-CPB once, we can get path utilities
of local items in fBg-CPB : fAg : 42; fCg : 51; fDg : 72 and
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fEg : 73. Thus, a local unpromising item {A} is identified
and we can get the decreasing order of path utility of items
in {B}-CPB as {E}, {D}, and {C}. During the second scan of
{B}-CPB, local unpromising item {A} is removed from the
paths <ADC> and <ADE>. At the same time, by DLU, {A}’s
estimated utilities in the above two paths are eliminated
from path utilities of the two paths by (1), i.e.,

puð<ADC>; fBg-CPBÞ ¼ 10�miuðAÞ �<ADC>:count

¼ 10� 5� 1 ¼ 5 and

puð<ADE>; fBg-CPBÞ ¼ 32�miuðAÞ �<ADE>:count

¼ 32� 5� 1 ¼ 27:

Reorganized paths and their reduced path utilities are
shown in second column of Table 5. Comparing the new
path utilities in the second column with the old ones in the
first column of Table 5, path utilities of the paths are shown
to be further reduced after applying strategy DLU.

Now we show the process of constructing a local UP-
Tree. Note that the paths are inserted into {B}-Tree
simultaneously while they are being reorganized. Con-
sider {B}-CPB shown in Table 5, according to DLN,
when the first reorganized path <DC> is inserted into
{B}-Tree, the first node ND is created under root node
with ND:nu ¼ 5�miuðCÞ �<DC>:count ¼ 5� 1� 1 ¼ 4
and ND:count ¼ 1. The second node NC is created under
ND with NC:nu ¼ 5 and NC:count ¼ 1. After inserting all
paths in {B}-CPB, {B}-Tree is constructed completely.
Fig. 6a shows the {B}-Tree when DGU, DGN, DLU, and

DLN are applied. Comparing the {B}-Tree shown in
Fig. 6a with that in Fig. 6b, it can be observed that node
utilities of the nodes are further reduced by the
strategies DLU and DLN.

Generating PHUIs from {B}-Tree by UP-Growth, the
PHUIs that are involved with {B} are obtained, i.e., fBg : 83,
fBDg : 60, fBDEg : 56, and fBEg : 62. After mining the
remaining items in header table, all PHUIs in the UP-Tree in
Fig. 3 can be obtained, i.e., fAg : 75, fBg : 83, fBDg : 60,
fBDEg : 56, fBEg : 62, and fDg : 55. By applying the four
strategies, the generation of PHUIs can be more efficient
since the fewer PHUIs are generated, the less time is spent.

3.3 An Improved Mining Method: UP-Growthþ

UP-Growth achieves better performance than FP-Growth
by using DLU and DLN to decrease overestimated utilities
of itemsets. However, the overestimated utilities can be
closer to their actual utilities by eliminating the estimated
utilities that are closer to actual utilities of unpromising
items and descendant nodes. In this section, we propose an
improved method, named UP-Growth+, for reducing over-
estimated utilities more effectively.

In UP-Growth, minimum item utility table is used to
reduce the overestimated utilities. In UP-Growth+, minimal
node utilities in each path are used to make the estimated
pruning values closer to real utility values of the pruned
items in database.

Definition 12. Assume that Nx is the node which records the
item x in the path p in a UP-Tree and Nx is composed of
the items x from the set of transactions TIDSET ðTXÞ. The
minimal node utility of x in p is denoted as mnuðx; pÞ and
defined as min8T2TIDSETðTXÞðuðx; T ÞÞ.
Minimal node utility for each node can be acquired during

the construction of a global UP-Tree. First, we add an
element, namely N.mnu, into each node of UP-Tree. N.mnu is
minimal node utility of N . When N is traced, N.mnu keeps
track of the minimal value of N .name’s utility in different
transactions. If N.mnu is larger than uðN:name; TcurrentÞ,
N:mnu is set to uðN:name; TcurrentÞ. Fig. 7 shows the global
UP-Tree withN:mnu in each node. In Fig. 7, N.mnu is the last
number in each node.
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TABLE 5
{B}-CPB After Applying DGU, DGN, and DLU

Fig. 6. {B}-Trees with different strategies.

Fig. 5. The subroutine of UP-Growth.

Fig. 7. A UP-Tree with minimal node utilities.



After introducing the modification of global UP-Tree,
now we address the processes and two improved strategies
of UP-Growth+, named DNU and DNN. When a local UP-
Tree is being constructed, minimal node utilities can also be
acquired by the same steps of global UP-Tree. In the mining
process, when a path is retrieved, minimal node utility of
each node in the path is also retrieved. Thus, we can simply
replace minimum item utility in (1) and (3) with minimal
node utility to obtain the (4) and (5) as follows, respectively.

Assume that there is a path p in fimg-CPB and
UIfimg�CPB is the set of unpromising items in fimg-CPB.
The path utility of p in fimg-CPB, i.e., puðp; fimg-CPB), is
recalculated as below equation:

puðp; fimgCPBÞ ¼ p:fimg:nu
�

X

8i2UIfimg-CPB^i�p
mnuðiÞ � p:count; ð4Þ

where p.count is the support count of p in {im}-CPB.
Assume that a reorganized path p ¼ <N0i1 N

0
i2 . . . N0im> in

{im}-CPB is inserted into the path <Ni1 Ni2 . . . Nim> in fimg-
Tree, where m0 � m. For the node Nik in fimg-Tree, where
1 � k � m’, Nik :nu is recalculated as below:

Nik :nunew ¼ Nik :nuold

þ puðp; fimgCPBÞ �
Xm0

j¼kþ1

mnuðijÞ � p:count;
ð5Þ

where Nik :nuold is the node utility of Nik in fimg-Tree before
adding p.

Since the proof of the above (4) and (5) is similar to that
of (1) and (3), it is omitted due to the page limitations. By
applying (4) and (5), DNU and DNN can also be defined as
the following two strategies.

Strategy 5. DNU. Discarding local unpromising items and
their estimated Node Utilities from the paths and path
utilities of conditional pattern bases by (4).

Strategy 6. DNN. Decreasing local Node utilities for the
nodes of local UP-Tree by estimated utilities of descendant
Nodes by (5).

By the above two strategies, the subroutines Insert_Reor-
ganized_Path and UP-Growth in Figs. 4 and 5 can be
modified to the two new subroutines for UP-Growth+.
Insert Reorgnized Pathmnu is an improved version of
Insert Reorgnized Path with following modifications.
When a new node Nix is created in Line 1, the element,
minimal node utility, is added into Nix and set Nix :mnu ¼
1 initially. Then, Nix :mnu is checked by inserting the
procedure “If Nix :mnu > mnuðix; pjÞ, set Nix :mnu to
mnuðix; pjÞ” between Lines 2 and 3 of the subroutine
Insert_Reorgnized_Path. Finally replace (3) in Line 2 with (5).
The modification of the function UP-Growth to the new one,
named UP-Growth+, is to replace DLU in Line 8 with DNU,
and, in Line 9, DLN and Insert_Reorgnized_Path with DNN
and Insert Reorgnized Pathmnu, respectively.

Next, we use an example for describing the processes of
UP-Growth+. Consider the UP-Tree in Fig. 7 and assume
that min_util is set to 50. First, node links of the bottom
entry {B} in header table are traced. Four paths are retrieved
and added into fBg-CPB : f<Að5ÞDð2ÞCð1Þ> : 10; 1g,
f<Dð6ÞCð4ÞEð3Þ> : 11; 1g, f<Cð4ÞEð3Þ> : 30; 1g a n d

f<Að10ÞDð12ÞEð3Þ>: 32; 1g. Note that the number in

bracket beside each item is minimal node utility recorded

in that node.
By scanning {B}-CPB once, path utility of each local item

is calculated: {A}: 42, {C}: 51, {D}: 72, and {E}: 73.

According to DNU, local unpromising item {A} and its

minimal node utility are discarded from path utilities of

the two paths <Að5ÞDð2ÞCð1Þ> and <Að10ÞDð12ÞEð3Þ>.

For <Að5ÞDð2ÞCð1Þ>, its path utility is recalculated

as 10�mnuðA; <ADC>Þ �<ADC>:count ¼ 10� 5� 1 ¼ 5;

for <Að10ÞDð12ÞEð3Þ>, its path utility is recalculated as

32�mnuðA; <ADE>Þ �<ADE>:count ¼ 32� 10� 1 ¼ 22.

Then the items in each path are reorganized by descending

order of the path utility of local items, i.e., {E}, {D}, and {C},

simultaneously. Retrieved paths, reorganized paths and

corresponding information of {B}-CPB are shown in

Table 6. Comparing Table 6 with Table 5, we can observe

the path utility of the last reorganized path <ED> is

further reduced by DNU.
When the first reorganized path <Dð2ÞCð1Þ> is retrieved,

according to DNN, the first node ND is created under the

root node with ND:nu ¼ 5�mnuðC; <DC>Þ �<DC>.

count ¼ 5� 1� 1 ¼ 4, ND:count ¼ 1 and ND:mnu ¼ 2. The

second node NC is created under ND with NC:nu ¼ 5;

NC:count ¼ 1, and NC:mnu ¼ 1. The second reorganized

path <E(3)D(6)C(4)> is inserted into {B}-Tree by the same

process as the first path. New nodes are created sequentially

as a new path in {B}-Tree: Node NE with NE:nu ¼ 30�
ðmnuðD; <EDC>Þ �<EDC>:countþ mnuðC; <EDC>Þ �
<EDC>:countÞ ¼ 30� ð6� 1þ 4� 1Þ ¼ 20, NE:count ¼ 1

a n d NE:mnu ¼ 3; ND w i t h ND:nu ¼ 30�mnuðC;
<EDC>Þ �<EDC>:count ¼ 30� 4� 1 ¼ 26, ND:count ¼ 1

and ND:mnu ¼ 6; NC with NC:nu ¼ 30, NC:count ¼ 1, and

NC:mnu ¼ 4.
When the third path <Eð3ÞCð4Þ> is inserted, NE:nu is

increased by 20þ ð11�mnuðC, <EC>Þ �<EC>:countÞ ¼
20þ ð11� 4� 1Þ ¼ 27 and NE:count is increased by 1. Since

NE:mnu is the same as mnuðE; <EC>Þ, i.e., 3, NE:mnu is not

updated. The second node NC is created under NE with

NC:nu ¼ 11, NC:count ¼ 1, and NC:mnu ¼ 4. After inserting

all paths, {B}-Tree shown in Fig. 8 is constructed. Comparing

Fig. 8 with Fig. 6a, node utilities in the {B}-Tree in Fig. 8 is

further reduced by DNU and DNN.
After mining the whole UP-Tree by UP-Growth+, we can

obtain all PHUIs, i.e., {A}:75, {B}:83, and {D}:55 in the UP-

Tree. In this example, the number of PHUIs of UP-Growth+

is less than that of UP-Growth. It means that the number of

PHUIs, as well as the overestimated utilities of itemsets, are

further reduced by UP-Growth+.
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TABLE 6
{B}-CPB by Applying DGU, DGN, and DNU



3.4 Efficiently Identify High Utility Itemsets

After finding all PHUIs, the third step is to identify high
utility itemsets and their utilities from the set of PHUIs by
scanning original database once. This step is called phase II
[3], [19]. However, in previous studies [3], [19], two
problems in this phase occur: 1) number of HTWUIs is
too large; and (2) scanning original database is very time-
consuming. In our framework, overestimated utilities of
PHUIs are smaller than or equal to TWUs of HTWUIs since
they are reduced by the proposed strategies. Thus, the
number of PHUIs is much smaller than that of HTWUIs.
Therefore, in phase II, our method is much efficient than the
previous methods.

Moreover, although our methods generate fewer candi-
dates in phase I, scanning original database is still time
consuming since the original database is large and it
contains lots of unpromising items. In view of this, in our
framework, high utility itemsets can be identified by
scanning reorganized transactions. Since there is no un-
promising item in the reorganized transactions, I/O cost
and execution time for phase II can be further reduced. This
technique works well especially when the original database
contains lots of unpromising items.

4 EXPERIMENTAL EVALUATION

Performance of the proposed algorithms is evaluated in this
section. The experiments were performed on a 2.80 GHz
Intel Pentium D Processor with 3.5 GB memory. The
operating system is Microsoft Windows 7. The algorithms
are implemented in Java language. Both real and synthetic
data sets are used in the experiments. Synthetic data sets
were generated from the data generator in [1]. Parameter
descriptions and default values of synthetic data sets are
shown in Table 7. Real world data sets Accidents and Chess
are obtained from FIMI Repository [41]; Chain-store
is obtained from NU-MineBench 2.0 [23]; Foodmart is
acquired from Microsoft foodmart 2000 database. Table 8
shows characteristics of the above data sets. In the above
data sets, except Chain-store and Foodmart, unit profits for
items in utility tables are generated between 1 and 1,000 by
using a log-normal distribution and quantities of items are
generated randomly between 1 and 10. The two real data
sets Chain-store and Foodmart already contain unit profits
and purchased quantities. Total utilities of the two data sets
are 26,388,499.8 and 120,160.84, respectively.

To show the performance of the proposed algorithms, we
compared several compared methods and give them new
notations as follows: IHUPTWU algorithm, which is pro-
posed in [3] and composed of IHUPTWU-Tree and FP-
growth, is denoted as IHUPT&FPG. For the proposed

algorithms, we design two methods UPT&UPG and
UPT&UPG+ that are composed of the proposed methods
UP-Tree and UP-Growth (with DGU, DGN, DLU, and
DLN) and the proposed methods UP-Tree and UP-Growth+

(with DGU, DGN, DNU, and DNN), respectively. To
further compare the performance of FP-Tree and UP-Tree,
a method called UPT&FPG is also proposed. UPT&FPG
generates PHUIs from UP-Tree by FP-Growth directly, in
other words, only DGU and DGN are applied. Common
settings of the above methods are as follows: First, both UP-
Tree and IHUP-Tree are constructed by scanning database
twice. Second, items in the transactions are rearranged in
descending order of their global TWUs during constructing
the trees. Third, at phase II, in order to compare the
performance with previous work [3], all algorithms identify
high utility itemsets by scanning original databases. For
convenience, PHUIs and HTWUIs are both called candi-
dates in our experiments.

4.1 Performance Comparison on Different Data Sets

In this part, we show the performance comparison on three
real data sets: dense data set Chess and sparse data sets
Chain-store and Foodmart. First, we show the results on
real dense data set Chess in Fig. 9. In Fig. 9a, we can observe
that the performance of proposed methods substantially
outperforms that of previous methods. The runtime of
IHUPT&FPG is the worst, followed by UPT&FPG, UP-
T&UPG, and UPT&UPG+ is the best. The main reason is the
performance of IHUPT&FPG and UPT&FPG is decided by
the number of generated candidates. In Fig. 9, runtime of
the methods is just proportional to their number of
candidates, that is, the more candidates the method
produces, the greater its execution time.

Experimental results on real sparse data sets are shown
in Fig. 10. The performance on Chain-store data set is
shown in Figs. 10a and 10b. In Fig. 10a, the runtime of
IHUPT&FPG is the worst, followed by UPT&FPG, UP-
T&UPG, and UPT&UPG+ is the best. The performance of
IHUPT&FPG is the worst since it generates the most
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Parameter Settings of Synthetic Data Sets

TABLE 8
Characteristics of Real Data Sets



candidates. Besides, although the number of candidates of
UPT&FPG, UPT&UPG, and UPT&UPG+ are almost the
same, the execution time of UPT&FPG is the worst among
the three methods since UP-Growth+ and UP-Growth
efficiently prune the search space of local UP-Trees.

Figs. 10c and 10d show the results on Foodmart data set.
In Fig. 10d, number of candidates of the compared methods
is almost the same when min_util is larger than 0.08 percent
or less than 0.01 percent. The reason is that when min_util is
larger than 0.08 percent, few redundant candidates whose
lengths are larger than 2 are generated by IHUP&FPG. On
the other hand, when min_util is less than 0.01 percent, since
it is too small, almost all possible candidates are generated
by all compared methods. When min_util is between 0.02
and 0.08 percent, the best performer is UPT&UPG+,
followed by UPT&UPG, UPT&FPG, and finally
IHUPT&FPG. However, when min_util is 0.01 percent, the
number of candidates is almost the same for each method.
The methods needing more calculations consume more
execution time, thus, UPT&UPG+ is the worst in this case.

Experimental results of phase II are shown in Fig. 11.
We only show the results on Foodmart and Chess since
runtime for phase II is very long for large databases, such

as Chain-store. In Fig. 11, we can observe that runtime for
phase II is not only proportional to number of candidates
in phase II but also increases fiercely. Moreover, compar-
ing Figs. 11a and 11b with Figs. 9a and 10c, the runtime
of phase II is much more than that of phase I. Such as
when min_util is 40 percent in Fig. 11a, the runtime for
phase II of UPT&FPG is about 3,605 seconds; however, in
Fig. 9a, the runtime for phase I of the same method at the
same threshold is only 84.15 seconds. Therefore, the
performance is highly dependent on the runtime in
phase II since the overhead of scanning databases is
huge.

By the above results and discussions, we can realize that
UP-Tree, UP-Growth, and UP-growthþ efficiently decrease
the number of candidates and make the performance much
better than that of the state-of-the-art utility mining
algorithm IHUP.

4.2 Performance Comparison under Different
Parameters

We show the results under different parameters in this
part. First, the performance under varied average transac-
tion length (T) is shown in Fig. 12. This experiment is
performed on synthetic data sets Tx.F6.|I|1,000.|D|100k
and min_util is set to 1 percent. In Fig. 12, runtime of all
algorithms increases with increasing T because when T is
larger, transactions and databases become longer and
larger. Also, runtime of the methods is proportional to
the number of candidates. The difference of the perfor-
mance between the methods appears when T is larger than
25. The best method is UPT&UPG+ and the worst one is
IHUPT&FPG. In Fig. 12b, the number of candidates
generated by UPT&UPG+ is the smallest. This shows that
UP-Growth+ can effectively prune more candidates by
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Fig. 10. Performance comparison on sparse data sets.

Fig. 11. Performance comparison of runtime for Phase II.

Fig. 12. Varied average transaction length.

Fig. 9. Performance comparison on dense data set.



decreasing overestimated utilities when transactions are
longer. In other words, UP-Growth+ is more efficient on
the data sets with longer transactions.

Fig. 13 shows the results under varied maximum
number of purchased items (Q) on real data set Accidents
when min_util is set to 20 percent. In Fig. 13a, runtime of
the algorithms is proportional to their number of
candidates. Overall, the runtime of IHUPT&FPG is the
worst, followed by UPT&FPG, with UPT&UPG+ and
UPT&UPG being the best. In Fig. 13b, the number of
candidates of IHUPT&FPG and UPT&FPG keeps the same
with increasing Q; on the other hand, that of UPT&UPG
and UPT&UPG+ increases. This is because Q is not a
factor of computation in IHUPT&FPG and UPT&FPG.
However, UP-Growth and UP-Growth+ use two values,
i.e., minimum item utility and minimal node utility, to
decrease overestimated utilities. If Q becomes larger, the
ratio of the two values to the overestimated utilities will
be smaller. In other words, the effect of DLU, DLN, DNU,
and DNN will be reduced. Nevertheless, although the
number of candidates of UPT&UPG and UPT&UPG+
increases with increasing Q, their upper bound is still the
number of candidates of UPT&FPG.

4.3 Performance for Different Sorting Methods

We show the performance about different sorting methods
which were mentioned in Section 3.1.4. Fig. 14 shows the
results on Accidents data set including following sorting
methods on UPT&UPG+: lexicographical order (LEX),
support descending order (SUP), TWU descending
(TWU(D)), and ascending (TWU(A)) orders, and real utility
descending (U(D)) and ascending (U(A)) orders. For U(D)
and U(A), we use the order of actual utilities of 1-PHUIs
after the first time database scan.

In Fig. 14a, we can observe that the runtime for SUP
and TWU(D) are the best and TWU(A) and U(A) are the
worst when min_util is low. The reasons are shown in
Figs. 14b and 14c. Since SUP and TWU(D) generate fewer
candidates and construct smaller global UP-Trees, their
performances are better. On the other hand, although
U(A) generates less candidates, its performance is worse
than the other methods except TWU(A) because its UP-
Trees are too large. This happens more severely in
TWU(A). It even cannot be executed when min_util is
less than 20 percent because it builds the largest global
UP-Trees and runs out of memory for not only larger but
also more local UP-Trees. Overall, the support descending

order is theoretically and consequentially the best since it

builds the smallest global UP-Trees and it can prune the

largest utility values in UP-Growth+ by DNU and DNN.

4.4 Scalability of the Proposed Methods

In this section, we show the scalability of the compared

methods. The experiments are performed on synthetic data

sets T10.F6.|I|1,000.|D|xk. Results of runtime for phases I

and II, number of candidates and number of high utility

itemsets are shown in Fig. 15 and Table 9, respectively. In

Fig. 15, we can observe that all compared algorithms have

good scalability on runtime. As shown in Fig. 15b, there are

only minor differences for runtime of phase I; however, in

Fig. 15a, there are significant differences in runtime. Total

runtime of UPT&UPG+ is the best, followed by UPT&UPG

and UPT&FPG, with IHUPT&FPG being the worst. This is

because when the size of database increases, runtime for

identifying high utility itemsets also increases. Here, the

importance of runtime for phase II is emphasized again. In

Table 9, number of PHUIs generated by UP&UPG+

outperforms other methods in the databases with varied

database sizes. Overall, the performance of UPG&UPG+

outperforms the other compared algorithms with increas-

ing size of databases since it generates the least PHUIs

in phase I.
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Fig. 13. Varied maximum number of purchased items (accidents).

Fig. 14. Performance of UP-Growth+ under different sorting methods.

Fig. 15. Experimental results under varied database size.



4.5 Memory Usage of the Proposed Methods

In this part, we discuss memory consumption of the

compared methods. Tables 10 and 11 show memory usage

of the compared methods (in GB) under varied min_util on

Chain-store data set and varied database sizes on synthetic

data sets T10.F6.|I|1,000.|D|xk, respectively. In Table 10,

memory usage of all methods increases with decreasing

min_util since less min_util makes IHUP-Trees and UP-

Trees larger. On the other hand, memory usage increases

with increasing database size in Table 11. Generally,

UP&UPG uses the least memory among the three methods.

This is because the strategies effectively decrease the

number of PHUIs and local UP-Trees. Besides, if UP&UPG

and UP&UPG+ generate similar number of PHUIs, UP&-

UPG outperforms UP&UPG+ because it does not need to

keep minimal node utilities in tree nodes. On the other

hand, the fewer PHUIs UP&UPG+ generates, the less

memory it consumes. Generally speaking, there is a tradeoff

between runtime and memory usage on UP&UPG and

UP&UPG+.

4.6 Summary of the Experimental Results

Experimental results in this section show that the proposed

methods outperform the state-of-the-art algorithms almost

in all cases on both real and synthetic data sets. The reasons

are described as follows.
First, node utilities in the nodes of global UP-Tree are

much less than TWUs in the nodes of IHUP-Tree since DGU

and DGN effectively decrease overestimated utilities during

the construction of a global UP-Tree.
Second, UP-growth and UP-Growth+ generate much

fewer candidates than FP-growth since DLU, DLN, DNU,

and DNN are applied during the construction of local UP-

Trees. By the proposed algorithms with the strategies,

generation of candidates in phase I can be more efficient

since lots of useless candidates are pruned.

Third, generally, UP-Growth+ outperforms UP-Growth
although they have tradeoffs on memory usage. The reason
is that UP-Growth+ utilizes minimal node utilities for
further decreasing overestimated utilities of itemsets. Even
though it spends time and memory to check and store
minimal node utilities, they are more effective especially
when there are many longer transactions in databases. In
contrast, UP-Growth performs better only when min_util is
small. This is because when number of candidates of the
two algorithms is similar, UP-Growth+ carries more
computations and is thus slower.

Finally, high utility itemsets are efficiently identified
from the set of PHUIs which is much smaller than HTWUIs
generated by IHUP. By the reasons mentioned above, the
proposed algorithms UP-Growth and UP-Growth+ achieve
better performance than IHUP algorithm.

5 CONCLUSIONS

In this paper, we have proposed two efficient algorithms
named UP-Growth and UP-Growth+ for mining high utility
itemsets from transaction databases. A data structure
named UP-Tree was proposed for maintaining the informa-
tion of high utility itemsets. PHUIs can be efficiently
generated from UP-Tree with only two database scans.
Moreover, we developed several strategies to decrease
overestimated utility and enhance the performance of
utility mining. In the experiments, both real and synthetic
data sets were used to perform a thorough performance
evaluation. Results show that the strategies considerably
improved performance by reducing both the search space
and the number of candidates. Moreover, the proposed
algorithms, especially UP-Growth+, outperform the state-
of-the-art algorithms substantially especially when data-
bases contain lots of long transactions or a low minimum
utility threshold is used.
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