4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

Data Mining Algorithms In R/Frequent Pattern
Mining/The FP-Growth Algorithm

In Data Mining the task of finding frequent pattern in large databases is very important and has been
studied in large scale in the past few years. Unfortunately, this task is computationally expensive, especially
when a large number of patterns exist.

The FP-Growth Algorithm, proposed by Han in (1] is an efficient and scalable method for mining the
complete set of frequent patterns by pattern fragment growth, using an extended prefix-tree structure for
storing compressed and crucial information about frequent patterns named frequent-pattern tree (FP-tree).
In his study, Han proved that his method outperforms other popular methods for mining frequent patterns,

e.g. the Apriori Algorithm 2] and the TreeProjection 31, In some later works [#1 51 16] it was proved that

FP-Growth has better performance than other methods, including Eclat [7] and Relim [8]. The popularity and
efficiency of FP-Growth Algorithm contributes with many studies that propose variations to improve his

performance [51 (6 [91 [10] [11] [12] [13] [14] [15] [16]

This chapter describes the algorithm and some variations and discuss features of the R language and
strategies to implement the algorithm to be used in the R. Next a briefly conclusion and future works are
proposed.

Contents

= | The algorithm
= .1 FP-Tree structure
= 1.2 FP-Growth Algorithm
= 1.3 An example
s 2 FP-Growth Algorithm Variations
= 2.1 DynFP-Growth Algorithm
= 2.2 FP-Bonsai Algorithm
2.3 AFOPT Algorithm
2.4 NONORDFP Algorithm
2.5 FP-Growth* Algorithm
2.6 PPV, PrePost, and FIN Algorithm
= 3 Data Visualization in R
= 4 Implementation in R
= 4.1 Creating a Package
= 4.2 Making external call using interface functions
= 4.3 The FP-Growth Implementation
= 4.4 Calling FP-Growth from R
= 5 Conclusion and Future Works
= 6 Appendix A: Examples of R statements
= 7 References

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 1/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

The algorithm

The FP-Growth Algorithm is an alternative way to find frequent itemsets without using candidate

generations, thus improving performance. For so much it uses a divide-and-conquer strategy [!7]. The core
of this method is the usage of a special data structure named frequent-pattern tree (FP-tree), which retains
the itemset association information.

In simple words, this algorithm works as follows: first it compresses the input database creating an FP-tree
instance to represent frequent items. After this first step it divides the compressed database into a set of
conditional databases, each one associated with one frequent pattern. Finally, each such database is mined
separately. Using this strategy, the FP-Growth reduces the search costs looking for short patterns
recursively and then concatenating them in the long frequent patterns, offering good selectivity.

In large databases, it’s not possible to hold the FP-tree in the main memory. A strategy to cope with this
problem is to firstly partition the database into a set of smaller databases (called projected databases), and
then construct an FP-tree from each of these smaller databases.

The next subsections describe the FP-tree structure and FP-Growth Algorithm, finally an example is
presented to make it easier to understand these concepts.

FP-Tree structure

The frequent-pattern tree (FP-tree) is a compact structure that stores quantitative information about frequent

patterns in a database [4])

Han defines the FP-tree as the tree structure defined below [11:

1. One root labeled as “null” with a set of item-prefix subtrees as children, and a frequent-item-header
table (presented in the left side of Figure 1);
2. Each node in the item-prefix subtree consists of three fields:

1. Item-name: registers which item is represented by the node;

2. Count: the number of transactions represented by the portion of the path reaching the node;

3. Node-link: links to the next node in the FP-tree carrying the same item-name, or null if there is
none.

1. Each entry in the frequent-item-header table consists of two fields:

1. Item-name: as the same to the node;
2. Head of node-link: a pointer to the first node in the FP-tree carrying the item-name.

Additionally the frequent-item-header table can have the count support for an item. The Figure 1 below
show an example of a FP-tree.

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 2/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

W Ix
ik S e
s ;

Figure 1: An example of an FP-tree from [17]

The original algorithm to construct the FP-Tree defined by Han in [!1is presented below in Algorithm 1.

Algorithm 1: FP-tree construction
Input: A transaction database DB and a minimum support threshold ?.
Output: FP-tree, the frequent-pattern tree of DB.
Method: The FP-tree is constructed as follows.

1. Scan the transaction database DB once. Collect F, the set of frequent items, and the support of
each frequent item. Sort F in support-descending order as FList, the list of frequent items.
2. Create the root of an FP-tree, T, and label it as “null”. For each transaction Trans in DB do the

following:

= Select the frequent items in Trans and sort them according to the order of FList. Let the
sorted frequent-item list in Trans be [p | P], where p is the first element and P is the
remaining list. Call insert tree([p | P], T).

= The function insert tree([p | P], T) is performed as follows. If T has a child N such that
N.item-name = p.item-name, then increment N ’s count by 1; else create a new node N,
with its count initialized to 1, its parent link linked to T , and its node-link linked to the
nodes with the same item-name via the node-link structure. If P is nonempty, call insert
tree(P, N) recursively.

By using this algorithm, the FP-tree is constructed in two scans of the database. The first scan collects and
sort the set of frequent items, and the second constructs the FP-Tree.

FP-Growth Algorithm

After constructing the FP-Tree it’s possible to mine it to find the complete set of frequent patterns. To

accomplish this job, Han in [1] presents a group of lemmas and properties, and thereafter describes the FP-
Growth Algorithm as presented below in Algorithm 2.

Algorithm 2: FP-Growth

Input: A database DB, represented by FP-tree constructed according to Algorithm 1, and a minimum

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 3/22

http://commons.wikimedia.org/wiki/File:FPG_FIG_01.jpg

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world
support threshold ?.

Output: The complete set of frequent patterns.
Method: call FP-growth(FP-tree, null).
Procedure FP-growth(Tree, a) {
(01) if Tree contains a single prefix path then // Mining single prefix-path FP-tree {
(02) let P be the single prefix-path part of Tree;
(03) let Q be the multipath part with the top branching node replaced by a null root;

(04) for each combination (denoted as) of the nodes in the path P do
(05) generate pattern 3 U a with support = minimum support of nodes in B;

(06) let freq pattern set(P) be the set of patterns so generated;
b
(07) else let Q be Tree;

(08) for each item ai in Q do { / Mining multipath FP-tree
(09) generate pattern 3 = ai U a with support = ai .support;

(10) construct B’s conditional pattern-base and then B’s conditional FP-tree Tree B;
(11) if Tree B # @ then
(12) call FP-growth(Tree 3, B3);

(13) let freq pattern set(Q) be the set of patterns so generated;

}

(14) return(freq pattern set(P) U freq pattern set(Q) U (freq pattern set(P) x freq pattern
set(Q)))

When the FP-tree contains a single prefix-path, the complete set of frequent patterns can be generated in
three parts: the single prefix-path P, the multipath Q, and their combinations (lines 01 to 03 and 14). The
resulting patterns for a single prefix path are the enumerations of its subpaths that have the minimum
support (lines 04 to 06). Thereafter, the multipath Q is defined (line 03 or 07) and the resulting patterns
from it are processed (lines 08 to 13). Finally, in line 14 the combined results are returned as the frequent
patterns found.

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 4/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

An example

This section presents a simple example to illustrate how the previous algorithm works. The original

example can be viewed in [13].

Consider the transactions below and the minimum support as 3:

i(t)
1 ABDE
2 BCE

3/ ABDE
4 ABCE
5| ABCDE
6 BCD

To build the FP-Tree, frequent items support are first calculated and sorted in decreasing order resulting in
the following list: { B(6), E(5), A(4), C(4), D(4) }. Thereafter, the FP-Tree is iteratively constructed for
each transaction, using the sorted list of items as shown in Figure 2.

(a) Transaction 1: (b) Transaction 2: BEC (c) Transaction 3: (d) Transaction 4:
BEAD BEAD BEAC

(e) Transaction 5: (f) Transaction 6: BCD

BEACD

Figure 2: Constructing the FP-Tree iteratively.

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm

5/22

http://commons.wikimedia.org/wiki/File:FPG_FIG_02A.jpg
http://commons.wikimedia.org/wiki/File:FPG_FIG_02C.jpg
http://commons.wikimedia.org/wiki/File:FPG_FIG_02D.jpg
http://commons.wikimedia.org/wiki/File:FPG_FIG_02F.jpg
http://commons.wikimedia.org/wiki/File:FPG_FIG_02E.jpg
http://commons.wikimedia.org/wiki/File:FPG_FIG_02B.jpg

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

As presented in Figure 3, the initial call to FP-Growth uses the FP-Tree obtained from the Algorithm 1,
presented in Figure 2 (f), to process the projected trees in recursive calls to get the frequent patterns in the
transactions presented before.

Using a depth-first strategy the projected trees are determined to items D, C, A, E and B, respectively. First
the projected tree for D is recursively processed, projecting trees for DA, DE and DB. In a similar manner
the remaining items are processed. At the end of process the frequent itemset is: { DAE, DAEB, DAB,
DEB, CE, CEB, CB, AE, AEB, AB, EB }.

Figure 3: Projected trees and frequent patterns founded by the recursively calls to FP-Growth Algorithm.

FP-Growth Algorithm Variations

As mentioned before, the popularity and efficiency of FP-Growth Algorithm contributes with many studies

that propose variations to improve its performance [>1161 91 [12] (191 [12] [13] [14] [15] [16] 1n this section
some of them are briefly described.

DynFP-Growth Algorithm

The DynFP-Growth [131 1] has focused in improving the FP-Tree algorithm construction based on two
observed problems:

1. The resulting FP-tree is not unique for the same “logical” database;
2. The process needs two complete scans of the database.

To solve the first problem Gyorddi C., et al. [13] proposes the usage of a support descending order together
with a lexicographic order, ensuring in this way the uniqueness of the resulting FP-tree for different
“logically equivalent” databases. To solve the second problem they proposed devising a dynamic FP-tree
reordering algorithm, and employing this algorithm whenever a “promotion” to a higher order of at least
one item is detected.

An important feature in this approach is that it’s not necessary to rebuild the FP-Tree when the actual
database is updated. It’s only needed to execute the algorithm again taking into consideration the new
transactions and the stored FP-Tree.

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 6/22

http://commons.wikimedia.org/wiki/File:FPG_FIG_03.jpg

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

Another adaptation proposed, because of the dynamic reordering process, is a modification in the original
structures, by replacing the single linked list with a doubly linked list for linking the tree nodes to the

header and adding a master-table to the same header. See [!3] for more details.

FP-Bonsai Algorithm

The FP-Bonsai (6] improve the FP-Growth performance by reducing (pruning) the FP-Tree using the

[14]

ExAnte data-reduction technique 1" *1. The pruned FP-Tree was called FP-Bonsai. See [6] for more details.

AFOPT Algorithm

Investigating the FP-Growth algorithm performance Liu proposed the AFOPT algorithm in 1121, This
algorithm aims at improving the FP-Growth performance in four perspectives:

= [tem Search Order: when the search space is divided, all items are sorted in some order. The
number of the conditional databases constructed can differ very much using different items
search orders;

= Conditional Database Representation: the traversal and construction cost of a conditional
database heavily depends on its representation;

= Conditional Database Construction Strategy: constructing every conditional database
physically can be expensive affecting the mining cost of each individual conditional database;

= Tree Traversal Strategy: the traversal cost of a tree is minimal using top-down traversal
strategy.

See [12] for more details.

NONORDFP Algorithm

The Nonordfp algorithm [151 5] was motivated by the running time and the space required for the FP-

Growth algorithm. The theoretical difference is the main data structure (FP-Tree), which is more compact
and which is not needed to rebuild it for each conditional step. A compact, memory efficient representation
of an FP-tree by using Trie data structure, with memory layout that allows faster traversal, faster allocation,

and optionally projection was introduced. See [13] for more details.

FP-Growth* Algorithm

This algorithm was proposed by Grahne et al 101191 ‘and is based in his conclusion about the usage of
CPU time to compute frequent item sets using FP-Growth. They observed that 80% of CPU time was used

for traversing FP-Trees ®1. Therefore, they used an array-based data structure combined with the FP-Tree

data structure to reduce the traversal time, and incorporates several optimization techniques. See (1611191 for
more details.

PPV, PrePost, and FIN Algorithm

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 7/22

4/27/2015

These three algorithms were propsed by Deng et al [20]

Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world
[21][22]

, and are based on three novel data structures

called Node-list [2%], N-list [2!], and Nodeset [22] respectively for facilitating the mining process of frequent

itemsets. They are based on a FP-tree with each node encoding with pre-order traversal and post-order

traversal. Compared with Node-lists, N-lists and Nodesets are more efficient. This causes the efficiency of

PrePost 21 and FIN [22] g higher than that of PPV [20] See [201 12111221 for more details.

Data Visualization in R

Normally the data used to mine frequent item sets are stored in text files. The first step to visualize data is

load it into a data-frame (an object to represent the data in R).

The function read.table could be used in the following way:

Where:

Another function in R to load data is called scan. See the R Data Import/Export Manual (http://cran.r-

e var: the R variable to receive the loaded data.
fileName: is a string value with the name of the file to be loaded.
fileEncoding: to be used when the file has no-ASCII characters.

header: indicates that the file has headers (T or TRUE) or not (F or FALSE).
sep: defines the field separator character (“,”, “;” or “\t” for example)
Only the filename is a mandatory parameter.

project.org/doc/manuals/R-data.html) for details.

The visualization of the data can be done in two ways:

= Using the variable name (var), to list the data in a tabular presentation.

var <- read.table(fileName, fileEncoding=value, header = value, sep = value)

= And summary(var), to list a summary of the data.

Example:

> data
A B

> summary(data)

Mode :logical
FALSE:2
TRUE :4
NA's :0

%21

C D E

1 TRUE TRUE FALSE TRUE TRUE
2 FALSE TRUE TRUE FALSE TRUE
3 TRUE TRUE FALSE TRUE TRUE
4 TRUE TRUE TRUE FALSE TRUE
TRUE TRUE TRUE TRUE TRUE
6 FALSE TRUE TRUE TRUE FALSE

B
Mode:logical
TRUE:6
NA's:0

> data <- read.table("boolean.data", sep=",",

C
Mode :logical
FALSE:2
TRUE :4
NA's :0

header=T)

D
Mode :logical
FALSE:2
TRUE :4
NA's :0

E
Mode :logical
FALSE:1
TRUE :5
NA's :0

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm

8/22

http://cran.r-project.org/doc/manuals/R-data.html

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

In the example above the data in “boolean.data”, that have a simple binary database, was loaded in the data-
frame variable data. Typing the name of the variable in the command line, its content is printed, and typing
the summary command the frequency occurrence of each item is printed. The summary function works

[24] [25]

differently. It depends on the type of data in the variable, see [23] for more details.

The functions presented previously can be useful, but to frequent item set datasets use an specific package
called arules (https://r-forge.r-project.org/projects/arules/) [26] which is better to visualize the data.

Using arules, several functions are made available:

= read.transactions: used to load the database file into a variable.

= inspect: used to list the transactions.

= length: returns the number of transactions.

= image: plots an image with all transactions in a matrix format.

= itemFrequencyPlot: calculates the frequency of each item and plots it in a bar graphic.

Example:

> data <- read.transactions("basket.data", format="basket", sep = ",")

E > data E
' transactions in sparse format with !
' 6 transactions (rows) and

' 5 items (columns) !

> inspect(data)
items
1 {A,
B,
D,
E}
2 {8,
G,
E}
3 {A,
B,
D,
E}
4 {A,
B,
c,
E}
5 {A,
B,
G,
D,
E}
6 {B,
G,
D}
> length(data)
[1] 6

> image(data)

> itemFrequencyPlot(data, support=0.1)

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 9/22

https://r-forge.r-project.org/projects/arules/

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

In this example we can see the difference in the usage of the variable name in the command line. From
transactions, only the number of rows (transactions) and cols (items) are printed. The result of image(data)
and itemFrequencyPlot(data, support = 0.1) are presented in the figures 4 and 5 below.

Figure 4: Result of the image(data) call.

Figure 5: Result of the itemFrequencyPlot(data, support = 0.1) call.
Implementation in R

The R [231[241[251[27] [28] provides several facilities for data manipulation, calculation and graphical
display very useful for data analysis and mining. It can be used as both a statistical library and a
programming language.

As a statistical library, it provides a set of functions to summary data, matrix facilities, probability
distributions, statistical models and graphical procedures.

As a programming language, it provides a set of functions, commands and methods to instantiate and
manage values of different type of objects (including lists, vectors and matrices), user interaction (input and
output from console), control statements (conditional and loop statements), creation of functions, calls to
external resources and create packages.

This chapter isn’t accomplished to present details about R resources and will focus on the challenges to
implement an algorithm using R or to be used in R. However, to better understanding the R power, some

basic examples based in (28] are presented in Appendix A.

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 10/22

http://commons.wikimedia.org/wiki/File:FPG_FIG_04.jpg
http://commons.wikimedia.org/wiki/File:FPG_FIG_05.jpg

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

To implement an algorithm using R, normally it would be necessary to create complex objects to represent
the data structures to be processed. Also, it would be necessary to implement complex functions to process
this data structures. Thinking in the specific case of implementing the FP-Growth algorithm could be very
hard to represent and process an FPTree using only the R resources. Moreover, for performance reasons it
could be interesting to implement the algorithm using other languages and integrate it with R. Other reasons

for using other languages are to get better memory management and to use existing packages[29].

Two ways to integrate R with other languages are available and will be briefly presented below: creating a

package and making an external call using interface functions [24] Next it is presented the FP-Growth
implementation used in this work and the efforts to integrate it with R. For both would be necessary to
install the RTools (http://www.murdoch-sutherland.com/Rtools/).

Creating a Package

Package is a mechanism for loading optional code implemented in other languages in R [24]. The R
distribution itself includes about 25 packages, and some extra packages used in this WikiBook can be listed:

aRules (http://r-forge.r-project.org/projects/arules/)

arulesNBMiner (http://cran.fiocruz.br/web/packages/arulesNBMiner/index.html)
arulesSequences (http://cran.r-project.org/web/packages/arulesSequences/index.html)
cluster (http://cran.r-project.org/web/packages/cluster/index.html)

To create a package it’s necessary to follow some specifications. The sources of an R package consist in a
directory structure described below:

= Root: the root directory containing a DESCRIPTION file and some optional files (INDEX,
NAMESPACE, configure, cleanup, LICENCE, COPYING and NEWS).

= R: contains only R code files that could be executed by the R command source(filename) to
create R objects used by users. Alternatively, this directory can have a file sysdata.rda. This file
has a saved image of R objects created in an execution of R console.

= data: aimed to have data files, either to be made available via lazy-loading or for loading using
function data(). These data files could be from three different types: plain R code (.r or .R),
tables (.tab, .txt, or .csv) or saved data from R console (.RData or .rda). Some additional
compressed file can be used to table’s files.

= demo: contains scripts in pain R code (for running using function demo()) that demonstrate
some of the functionality of the package

= exec: could contain additional executables the package needs, typically scripts for interpreters
such as the shell, Perl, or Tcl.

= inst: its content will be copied to the installation directory after it is built and its makefile can
create files to be installed. May contain all information files that intended to be viewed by end
users.

= man: should contain only documentation files for the objects in the package (using an specific
R documentation format). An empty man directory causes an installation error.

= po: used for files related to internalization, in other words, to translate errors and warning
messages.

= src: contains the sources, headers, makevars and makefiles. The supported languages are: C,
C++, FORTRAN 77, Fortran 9x, Objective C and Objective C++. It’s not possible to mix all
these languages in a single package, but mix C and FORTRAN 77 or C and C++ seems to be

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 11/22

http://www.murdoch-sutherland.com/Rtools/
http://cran.r-project.org/web/packages/arulesSequences/index.html
http://cran.r-project.org/web/packages/cluster/index.html
http://cran.fiocruz.br/web/packages/arulesNBMiner/index.html
http://r-forge.r-project.org/projects/arules/

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

successful. However, there ways to make usage from other packages.
= tests: used for additional package-specific test code.

Once a source package is created, it must be installed by the command line in the OS console:

Alternatively, packages can be downloaded and installed from within R, using the command line in the R
console:

See the Installation and Administration manual (http://cran.r-project.org/doc/manuals/R-admin.html) [27],
for details.

After installed, the package needs to be loaded to be used, using the command line in the R console:

Making external call using interface functions

Making external call using interface functions is a simple way to use external implementation without
complies with all rules described before to create a package to R.

First the code needs to include R.h header file that comes with R installation.

To compile a source code is needs to use the compiler R at the OS command line:

Compiled code to be used in R needs to be loaded as a shared object in Unix-like OS, or as a DLL in
Windows OS. To load or unload it can be used the commands in the R console:

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 12/22

http://cran.r-project.org/doc/manuals/R-admin.html

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

' > dyn.load(fileName)
1 > dyn.unload(fileName)

After the load, the external code can be called using some of these functions:

n C

= Call

= Fortran
» _External

Two simple examples are presented below, using .C function:

Example 1: Hello World

C code in file examplel.c
#include <R.h>
Void do_stuff ()

printf("\nHello, I'm in a C code!\n");

R code in file example.R
dyn.load("examplel.dl1l")
doStuff <-

function (){
tmp <- .C("do_stuff")

rm(tmp)
return(o)
}
doStuff()

Compiling code in 0S command line

C:\R\examples>R CMD SHLIB examplel.c

gcc -I"C:/PROGRA~1/R/R-212~1.0/include” -03 -Wall -std=gnu99 -c examplel.c -o examplel.o

gcc -shared -s -static-libgcc -o examplel.dll tmp.def examplel.o -LC:/PROGRA~1/R/R-212~1.0/bin/i386 -1R
Output in R console

> source("examplel.R")

Hello, I'm in a C code!

[29]

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm

13/22

4/27/2015

Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

##C code in file example2.c

#include <R.h>

void doStuff(int *i) {

}

i[e] = 11;

Output in R console

> dyn.load("example2.d11l")

> a <-

> a

[1]

1:10

1 2 3 45 6 7 8 910

> out <- .C("doStuff", b = as.integer(a))

> a

[1]
> out$b
[1] 11

1 2 3 45 6 7 8 9160

2 3 45 6 7 8 910

The FP-Growth Implementation

The FP-Growth implementation used in this work was maded by Christian Borgelt

(http://www.borgelt.net//fpgrowth.html) 3015 principal researcher at European Centre for Soft Computing.

He also implemented the code used in arules package (https://r-forge.r-project.org/projects/arules/) [26] for

Eclat and Apriori algorithms. The source code can be downloaded in his personal site.

As described by Borgelt 3% implemented two variants of the core operation of computing a projection of
an FP-tree. In addition, projected FP-trees are optionally pruned by removing items that has becoming in-

frequent (using FP-Bonsai [6] approach).

The source code is divided into three main folders (packages):

= fpgrowth: contais the main file that implements the algorithm and manages the FP-Tree;

= tract: manages item sets, transactions and its reports;
= util: facilities to be used in fpgrowth and tract.

The syntax to call this implementation, from the OS command line, is:

> fpgrowth [options] infile [outfile [selfile]]

-t#

-m#
-n#
-s#

-e#
-d#
-8

-H#
-k#
-v#
-q#t

-3

target type (default: s)

(s: frequent, c: closed, m: maximal item sets)

minimum number of items per item set (default: 1)
maximum number of items per item set (default: no limit)
minimum support of an item set (default: 10%)
(positive: percentage, negative: absolute number)

additional evaluation measure (default: none)

minimum value of add. evaluation measure (default: 10%)
write output in scanable form (quote certain characters)

record header for output (default: "")

item separator for output (default: " ")
output format for item set information (default: " (%1S)")
sort items w.r.t. their frequency (default: 2)

(1: ascending, -1: descending, ©: do not sort,
2: ascending, -2: descending w.r.t. transaction size sum)
use quicksort to sort the transactions (default: heapsort)

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm

14/22

http://www.borgelt.net//fpgrowth.html
https://r-forge.r-project.org/projects/arules/

4/27/2015

Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

. -a# variant of the fpgrowth algorithm to use (default: simple) i
1o-X do not prune with perfect extensions |
Y 4 do not use head union tail (hut) pruning !
' (only for maximal item sets, option -tm) !
" -b# blank characters (default: " \t\r") !
. -T# field separators (default: " \t," X
Lo-r# record separators (default: "\n") !
V- CH comment characters (default: "#") !
Y print additional option information |
v infile file to read transactions from [required] !
. outfile file to write frequent item sets to [optional] !
1 selfile file stating a selection of items [optional] !

There are options to choose the limits of items per set, the minimum support, evaluation measure, to

configure the input and output format, and so on.

A simple calling to FP-Growth, and its results, using the test1.tab example file (that comes with source
code) as input file, the testl.out, and minimum support as 30%, could be made as follow:

reading testl.tab ..
filtering, sorting and recoding items ..
reducing transactions ..
writing testl.out ... [15 set(s)] done [0.00s].

C:\R\exec\fpgrowth\src>fpgrowth -s30 testl.tab testl.out
fpgrowth - find frequent item sets with the fpgrowth algorithm
version 4.10 (2010.10.27) (c) 2004-2010 Christian Borgelt
. [5 item(s), 1@ transaction(s)] done [0.00s].
. [5 item(s)] done [0.00s].
. [8/10 transaction(s)] done [0.00s].

The presented result shows some information about Copyright and some execution data, as the number of
items and transactions and the number of frequent set (21 in this example). The content of input and output

files

The

0N VWAV OoLWOoV L
Qo MmMOoONOoONnAoC

is presented below.

input file content:

——

ed
e
ac

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm

(30.0)
(30.0)
b (40.0)

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

c (40.9)

db (30.9)

d (40.0)

b (50.0)
(60.0)

bc (30.0)

b (40.0)

c (40.0)
(70.0)

b (60.0)
(70.0)
(70.0)

[2o o NN « Wi« Ny« Wiy « WY DR DI D I « DI o]

__

Calling FP-Growth from R

As observed before, to create a package are imposed a several rules creating a standard directory structure
and content to make it available an external source code. An alternative presented before is to creating a
shared object, or a DLL, to be called using specific R functions (.C, .CALL, and so on).

To start a job of adapt an existing code to compose a package can be a hard job and spending too much
time. An interesting approach is to iteratively create and adapt a shared object, or DLL, and make tests to
validate it and after improve the adaptations in some iterations, when a satisfactory result has been done,
start to work in a package version.

The intent iterations to make it available the C implementation in R are:

1. Create a simple command line call, without parameters making only two changes in the original
source (the fpgrowth.c file):

= Rename the main function to FP-Growth with the same signature;

= Create a function to be called from R, creating the parameters from a configuration file
(containing only a string with the same syntax of the command line, broken it in an array
to be used as the argument array to FP-Growth function;

2. Compile the code project within the R compile command, including the R.h reader file and call it
using R;

3. Implement the input parameters from the R call, eliminating the usage of a configuration file,
including the change to define a input file name to data-frames in R;

4. Preparing the output in a R data-frame to be returned to R;

5. Create the R package.

The first iteration could be done easily, without any surprise.

Unfortunately, the second iteration, that sounds to be ease to be done either, in a practice proved to be very
hard. The R compile command does not work with makefiles and the compile original code with it could
not be done. After some experiments, the strategy was changed to build a library with the adapted code,
without the function created to be called from R, and then create a new code containing this function and
making use of the compiled library. Next, calling the new code, compiled as a DLL, from R raises

execution errors. Debugging the execution, wasting several time, was detected that some compile
configurations to create the library was wrong. To solving this problem, some tests are made creating an
executable version to be run using OS command line until all execution errors are solved. However, solved
this errors, another unexpected behavior was founded. Calling the version compiled using R command from
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 16/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

R console the incompatible cygwin version error was rised in loading DLL function. Several experiments,
changing the compilation parameters, different versions of cygwin, and so on were tried, but have no
success (these tests are made only under Windows OS). So, having no success in the second iteration, the
next step was compromised.

The main expected challenge in third and fourth iterations is to interface the R data types and structure with
its correspondents in the C language, either to dataset input and other input parameters to be converted and
used internally than to output dataset needed to be created to be returned to R. An alternative is to adapt all
the code to use the data received. However, it sounds to be more complex to be done.

The fifth iteration sounds to be a bureaucratic work. Once the code has been entirely adapted and validated,
create the additional directory and required content should be an easy task.

Conclusion and Future Works

In this chapter an efficient and scalable algorithm to mine frequent patterns in databases was presented: the
FP-Growth. This algorithm uses a useful data structure, the FP-Tree, to store information about frequent
patterns. Also an implementation of the algorithm was presented. Additionally, some features of R language
and experiments to adapt the algorithm source code to be used in R. We could observe that the job to make
this adaptation is hard, and cannot be done in short time. Unfortunately, have no time yet to conclude this
adaptation.

As a future work would be interesting to better understand the implementation of external resources on R
and complete the job proposed in this work, and after comparing results with other algorithms to mining
frequent itemsets available in R.

Appendix A: Examples of R statements

Some basic examples based in [28],

Getting help about functions

E > help(summary)
| > ?summary

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 17/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

>z <-5
> W <- z"2
>y <- (34 +90) / 12.5

> X <- sqrt(v)

> vil<- c(4, 6, 87)

> v2 <- c(34, 32.4, 12)
> vl + v2

[1] 38.0 38.4 99.0

> s <- c("f", "m", "m", "f")
> s

[1] "£" "m" "m" "f"

> s <- factor(s)

>'s

[1] fmmf

Levels: f m

> table(s)

s
fm
22

Sequences

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 18/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

> X <- 1:1000
>y <- 5:0
z

<- seq(-4, 1, 0.5) # create a sequence starting in -4, stopping in 1

with an increment of 0.5

> W <- rnorm(10) # create a random sequence of 10 numeric values
> W <- rnorm(10, mean

= 10, sd = 3) # create a normal distribution of
10 numeric values with mean of 10
and standard deviation of 3

> ml <- matrix(c(45,
> ml

[,11 [,2]
[1,1] 45 66
[2,] 23 77

> m2 <- matrix(c(12,

E > m2

[,3]

65, 32, 7, 4, 78), 2, 3)

[,11 [,2] [,3]
[1,] 12 32 4
[2,] 65 7 78
>ml + m2

[,11 [,2] [,3]
[1,] 57 98 37
[2,] 88 84 122

Lists

> student[[1]]
[1] 34353
> student$nro
[1] 34353

> student <- list(nro

= 34453, name = "Marie", scores = c(9.8, 5.7, 8.3))

. > scores.inform <- data.frame(nro = c(2355, 3456, 2334, 5456), |
.+ team = c("tpl", "tp1l", "tp2", "tp3"), |
.\ + score = c(10.3, 9.3, 14.2, 15)) |
. > scores.inform |
' nro team score |
.1 2355 tpl 10.3 |
. 2 3456 tpl 9.3 |
. 3 2334 tp2 14.2 |
. 4 5456 tp3 15.0 |
. > scores.inform[score > 14,] |
i nro team score |
.3 2334 tp2 14.2 :
. 4 5456 tp3 15.0 |
E > team i

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm

19/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

' [1] tpl tpl tp2 tp3
» Levels: tpl tp2 tp3

Fr ST TS T T T T T T T T TS E TS E TS E e e E e EEEEEEEEE ':
V> if (x >0) y<-z/ xelsey <-1z '
o> if (x> 0) { '
Lo+ cat('x is positive.\n') i
L+ y <-z/ x |
1 +} else { |
L+ cat('x isn’t positive!\n") |
poF y <-z |
3 |

> sem <- "green"
> switch(sem, green = "continue", yellow = "attention", red = "stop")
[1] "continue"

X <- rnorm(1)

while (x < -0.3) {
cat("x=", x, "\t")
X <- rnorm(1)

+ + + vV

}

text <- c() i
repeat { !

cat('Type a phrase? (empty to quit) ') !
fr <- readlLines(n=1)

+ + + vyv

if (fr == '') break else texto <- c(texto,fr)
+}

> X <- rnorm(1@)
>k <- 0

> for(v in x) {
+ if(v > 0)

+ y <- Vv

+ elsey«<-20
+ k <- k +y
+

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 20/22

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

>

+
1
Lo+
'

+

v

' [1]

cel2far <- function(cel) {

res <- 9/5 * cel + 32
res

cel2far(27.4)

81.32

' > cel2far(c(@, -34.2, 35.6, 43.2))

' [1]

32.00 -29.56 96.08 109.76

References

1.

2.

3.

10.

1.

12.

13.

14.

15.

16.

17.

J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In: Proc. Conf.
on the Management of Data (SIGMOD’00, Dallas, TX). ACM Press, New York, NY, USA 2000.
Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proc. 1994 Int.
Conf. Very Large Data Bases (VLDB’94), Santiago, Chile, pp. 487—499.

Agarwal, R., Aggarwal, C., and Prasad, V.V.V. 2001. A tree projection algorithm for generation of
frequent itemsets. Journal of Parallel and Distributed Computing, 61:350-371.

B.Santhosh Kumar and K.V.Rukmani. Implementation of Web Usage Mining Using APRIORI and
FP Growth Algorithms. Int. J. of Advanced Networking and Applications, Volume: 01, Issue:06,
Pages: 400-404 (2010).

Cornelia Gyorddi and Robert Gyorddi. A Comparative Study of Association Rules Mining
Algorithms.

F. Bonchi and B. Goethals. FP-Bonsai: the Art of Growing and Pruning Small FP-trees. Proc. 8th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’04, Sydney,
Australia), 155-160. Springer-Verlag, Heidelberg, Germany 2004.

M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast Discovery of Association
Rules. Proc. 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD’97), 283-296. AAAI
Press, Menlo Park, CA, USA 1997.

Christian Borgelt. Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination.
Workshop Open Source Data Mining Software (OSDM'05, Chicago, IL), 66-70. ACM Press, New
York, NY, USA 2005

Aiman Moyaid, Said and P.D.D., Dominic and Azween, Abdullah. A Comparative Study of FP-
growth Variations. international journal of computer science and network security, 9 (5). pp. 266-
272.

Liu,G., Lu H., Yu,J. X., Wang, W., & Xiao, X.. AFOPT: An Efficient Implementation of Pattern
Growth Approach, In Proc. IEEE ICDM'03 Workshop FIMI'03, 2003.

Grahne, G. , & Zhu, J. Fast Algorithm for frequent Itemset Mining Using FP-Trees. IEEE
Transactions on Knowledge and Data Engineer,Vol.17,NO.10, 2005.

Gao, J. Realization of new Association Rule Mining Algorithm. Int. Conf. on Computational
Intelligence and Security ,IEEE, 2007.

Cornelia Gyorddi, Robert Gyorddi, T. Cofeey & S. Holban. Mining association rules using Dynamic
FP-trees. in Proceedings of The Irish Signal and Systems Conference, University of Limerick,
Limerick, Ireland, 30th June 2nd July 2003, ISBN 0-9542973-1-8, pag. 76-82.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated data reduction in
constrained pattern mining. In Proc. of PKDDO03.

Balazes Racz. Nonordfp: An FP-Growth Variation without Rebuilding the FP-Tree. 2nd Int'l
Workshop on Frequent Itemset Mining Implementations FIMI2004.

Grahne O. and Zhu J. Efficiently Using Prefix-trees in Mining Frequent Itemsets, In Proc. of the
[EEE ICDM Workshop on Frequent Itemset Mining, 2004.

Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques. 2nd edition, Morgan

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 21/22

http://en.wikibooks.org/wiki/Special:BookSources/0954297318

4/27/2015 Data Mining Algorithms In R/Frequent Pattern Mining/The FP-Growth Algorithm - Wikibooks, open books for an open world

Kaufmann, 2006.

18. M. Zaki and W. Meira Jr. Fundamentals of Data Mining Algorithms, Cambridge, 2010 (to be
published)

19. Grahne, G., & Zhu, J. Fast Algorithm for frequent Itemset Mining Using FP-Trees. IEEE
Transactions on Knowledge and Data Engineer,Vol.17,NO.10, 2005.

20. Z. H. Deng and Z. Wang. A New Fast Vertical Method for Mining Frequent Patterns [1]
(http://www.tandfonline.com/doi/abs/10.1080/18756891.2010.9727736). International Journal of
Computational Intelligence Systems, 3(6): 733 - 744, 2010.

21. Z. H. Deng, Z. Wang, andJ. Jiang. A New Algorithm for Fast Mining Frequent Itemsets Using N-
Lists [2] (http://info.scichina.com:8084/sciFe/EN/abstract/abstract508369.shtml). SCIENCE CHINA
Information Sciences, 55 (9): 2008 - 2030, 2012.

22. Z.H. Deng and S. L. Lv. Fast mining frequent itemsets using Nodesets [3]
(http://www.sciencedirect.com/science/article/pii/S0957417414000463). Expert Systems with
Applications, 41(10): 45054512, 2014.

23. W.N. Venables, D. M. Smith and the R Development Core Team. An Introduction to R: Notes on R:
A Programming Environment for Data Analysis and Graphics. Version 2.11.1 (2010-05-31).

24. R Development Core Team. R Language Definition. Version 2.12.0 (2010-10-15) DRAFT.

25. R Development Core Team. Writing R Extensions. Version 2.12.0 (2010-10-15).

26. Michael Hahsler and Bettina G and Kurt Hornik and Christian Buchta. Introduction to arules — A
computational environment for mining association rules and frequent item sets. March 2010.

27. R Development Core Team. R Installation and Administration. Version 2.12.0 (2010-10-15).

28. Luis Torgo. Introducao a Programacao em R. Faculdade de Economia, Universidade do Porto,
Outubro de 2006.

29. Sigal Blay. Calling C code from R an introduction. Dept. of Statistics and Actuarial Science Simon
Fraser University, October 2004.

30. Christian Borgelt. An Implementation of the FP-growth Algorithm. Workshop Open Source Data
Mining Software (OSDM'05, Chicago, IL), 1-5. ACM Press, New York, NY, USA 2005.

Retrieved from "http://en.wikibooks.org/w/index.php?
title=Data Mining_Algorithms In R/Frequent Pattern Mining/The FP-
Growth Algorithm&oldid=2646294"

= This page was last modified on 5 May 2014, at 08:57.
= Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy.

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm 22/22

http://www.tandfonline.com/doi/abs/10.1080/18756891.2010.9727736
http://wikimediafoundation.org/wiki/Terms_of_Use
http://info.scichina.com:8084/sciFe/EN/abstract/abstract508369.shtml
http://en.wikibooks.org/w/index.php?title=Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm&oldid=2646294
http://www.sciencedirect.com/science/article/pii/S0957417414000463
http://wikimediafoundation.org/wiki/Privacy_policy
http://creativecommons.org/licenses/by-sa/3.0/

