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1 Introduction

Frequent itemsets play an essential role in many data mining tasks that
try to find interesting patterns from databases, such as association rules,
correlations, sequences, episodes, classifiers, clusters and many more of which
the mining of association rules is one of the most popular problems. The
original motivation for searching association rules came from the need to
analyze so called supermarket transaction data, that is, to examine customer
behavior in terms of the purchased products. Association rules describe
how often items are purchased together. For example, an association rule
“beer ⇒ chips (80%)” states that four out of five customers that bought
beer also bought chips. Such rules can be useful for decisions concerning
product pricing, promotions, store layout and many others.

Since their introduction in 1993 by Argawal et al. [3], the frequent itemset
and association rule mining problems have received a great deal of attention.
Within the past decade, hundreds of research papers have been published
presenting new algorithms or improvements on existing algorithms to solve
these mining problems more efficiently.

In this chapter, we explain the basic frequent itemset and association
rule mining problems. We describe the main techniques used to solve these
problems and give a comprehensive survey of the most influential algorithms
that were proposed during the last decade.
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2 Problem Description

Let I be a set of items. A set X = {i1, . . . , ik} ⊆ I is called an itemset, or a
k-itemset if it contains k items.

A transaction over I is a couple T = (tid , I) where tid is the transaction
identifier and I is an itemset. A transaction T = (tid , I) is said to support
an itemset X ⊆ I, if X ⊆ I.

A transaction database D over I is a set of transactions over I. We omit
I whenever it is clear from the context.

The cover of an itemset X inD consists of the set of transaction identifiers
of transactions in D that support X:

cover(X,D) := {tid | (tid , I) ∈ D, X ⊆ I}.

The support of an itemset X in D is the number of transactions in the cover
of X in D:

support(X,D) := |cover(X,D)|.

The frequency of an itemset X in D is the probability of X occurring in a
transaction T ∈ D:

frequency(X,D) := P (X) =
support(X,D)

|D|
.

Note that |D| = support({},D). We omit D whenever it is clear from the
context.

An itemset is called frequent if its support is no less than a given absolute
minimal support threshold σabs , with 0 ≤ σabs ≤ |D|. When working with
frequencies of itemsets instead of their supports, we use a relative minimal
frequency threshold σrel , with 0 ≤ σrel ≤ 1. Obviously, σabs = dσrel · |D|e. In
this thesis, we will only work with the absolute minimal support threshold
for itemsets and omit the subscript abs unless explicitly stated otherwise.

Definition 1. Let D be a transaction database over a set of items I, and σ
a minimal support threshold. The collection of frequent itemsets in D with
respect to σ is denoted by

F(D, σ) := {X ⊆ I | support(X,D) ≥ σ},

or simply F if D and σ are clear from the context.

Problem 1. (Itemset Mining) Given a set of items I, a transaction
database D over I, and minimal support threshold σ, find F(D, σ).
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In practice we are not only interested in the set of itemsets F , but also
in the actual supports of these itemsets.

An association rule is an expression of the form X ⇒ Y , where X and Y
are itemsets, and X ∩ Y = {}. Such a rule expresses the association that if
a transaction contains all items in X, then that transaction also contains all
items in Y . X is called the body or antecedent, and Y is called the head or
consequent of the rule.

The support of an association rule X ⇒ Y in D, is the support of X ∪ Y
in D, and similarly, the frequency of the rule is the frequency of X ∪ Y . An
association rule is called frequent if its support (frequency) exceeds a given
minimal support (frequency) threshold σabs (σrel). Again, we will only work
with the absolute minimal support threshold for association rules and omit
the subscript abs unless explicitly stated otherwise.

The confidence or accuracy of an association rule X ⇒ Y in D is the
conditional probability of having Y contained in a transaction, given that X
is contained in that transaction:

confidence(X ⇒ Y,D) := P (Y |X) =
support(X ∪ Y,D)

support(X,D)
.

The rule is called confident if P (Y |X) exceeds a given minimal confidence
threshold γ, with 0 ≤ γ ≤ 1.

Definition 2. Let D be a transaction database over a set of items I, σ
a minimal support threshold, and γ a minimal confidence threshold. The
collection of frequent and confident association rules with respect to σ and
γ is denoted by

R(D, σ, γ) := {X ⇒ Y | X,Y ⊆ I, X ∩ Y = {},
X ∪ Y ∈ F(D, σ), confidence(X ⇒ Y,D) ≥ γ},

or simply R if D, σ and γ are clear from the context.

Problem 2. (Association Rule Mining) Given a set of items I, a trans-
action database D over I, and minimal support and confidence thresholds σ
and γ, find R(D, σ, γ).

Besides the set of all association rules, we are also interested in the sup-
port and confidence of each of these rules.

Note that the Itemset Mining problem is actually a special case of the
Association Rule Mining problem. Indeed, if we are given the support and
confidence thresholds σ and γ, then every frequent itemset X also represents
the trivial rule X ⇒ {} which holds with 100% confidence. Obviously, the
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support of the rule equals the support of X. Also note that for every frequent
itemset I, all rules X ⇒ Y , with X∪Y = I, hold with at least σrel confidence.
Hence, the minimal confidence threshold must be higher than the minimal
frequency threshold to be of any effect.

Example 1. Consider the database shown in Table 1 over the set of items

I = {beer, chips, pizza, wine}.

tid X
100 {beer, chips, wine}
200 {beer, chips}
300 {pizza, wine}
400 {chips, pizza}

Table 1: An example transaction database D.

Table 2 shows all frequent itemsets inD with respect to a minimal support
threshold of 1. Table 3 shows all frequent and confident association rules with
a support threshold of 1 and a confidence threshold of 50%.

The first algorithm proposed to solve the association rule mining problem
was divided into two phases [3]. In the first phase, all frequent itemsets are
generated (or all frequent rules of the form X ⇒ {}). The second phase con-
sists of the generation of all frequent and confident association rules. Almost
all association rule mining algorithms comply with this two phased strategy.
In the following two sections, we discuss these two phases in further detail.
Nevertheless, there exist a successful algorithm, called MagnumOpus, that
uses another strategy to immediately generate a large subset of all associa-
tion rules [40]. We will not discuss this algorithm here, as the main focus
of this survey is on frequent itemset mining of which association rules are a
natural extension.

Next to the support and confidence measures, a lot of other interesting-
ness measures have been proposed in order to get better or more interesting
association rules. Recently, Tan et al. presented an overview of various mea-
sures proposed in statistics, machine learning and data mining literature [38].
In this survey, we only consider algorithms within the support-confidence
framework as presented before.
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Itemset Cover Support Frequency
{} {100, 200, 300, 400} 4 100%
{beer} {100,200} 2 50%
{chips} {100,200,400} 3 75%
{pizza} {300,400} 2 50%
{wine} {100,300} 2 50%
{beer, chips} {100,200} 2 50%
{beer, wine} {100} 1 25%
{chips, pizza} {400} 1 25%
{chips, wine} {100} 1 25%
{pizza, wine} {300} 1 25%
{beer, chips, wine} {100} 1 25%

Table 2: Itemsets and their support in D.

Rule Support Frequency Confidence
{beer} ⇒ {chips} 2 50% 100%
{beer} ⇒ {wine} 1 25% 50%
{chips} ⇒ {beer} 2 50% 66%
{pizza} ⇒ {chips} 1 25% 50%
{pizza} ⇒ {wine} 1 25% 50%
{wine} ⇒ {beer} 1 25% 50%
{wine} ⇒ {chips} 1 25% 50%
{wine} ⇒ {pizza} 1 25% 50%
{beer, chips} ⇒ {wine} 1 25% 50%
{beer, wine} ⇒ {chips} 1 25% 100%
{chips, wine} ⇒ {beer} 1 25% 100%
{beer} ⇒ {chips, wine} 1 25% 50%
{wine} ⇒ {beer, chips} 1 25% 50%

Table 3: Association rules and their support and confidence in D.
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3 Itemset Mining

The task of discovering all frequent itemsets is quite challenging. The search
space is exponential in the number of items occurring in the database. The
support threshold limits the output to a hopefully reasonable subspace. Also,
such databases could be massive, containing millions of transactions, making
support counting a tough problem. In this section, we will analyze these two
aspects into further detail.

3.1 Search Space

The search space of all itemsets contains exactly 2|I| different itemsets. If I
is large enough, then the naive approach to generate and count the supports
of all itemsets over the database can’t be achieved within a reasonable period
of time. For example, in many applications, I contains thousands of items,
and then, the number of itemsets is more than the number of atoms in the
universe (≈ 1079).

Instead, we could generate only those itemsets that occur at least once
in the transaction database. More specifically, we generate all subsets of all
transactions in the database. Of course, for large transactions, this number
could still be too large. Therefore, as an optimization, we could generate
only those subsets of at most a given maximum size. This technique has been
studied by Amir et al. [8] and has proven to pay off for very sparse transaction
databases. Nevertheless, for large or dense databases, this algorithm suffers
from massive memory requirements. Therefore, several solutions have been
proposed to perform a more directed search through the search space.

During such a search, several collections of candidate itemsets are gener-
ated and and their supports computed until all frequent itemsets have been
generated. Formally,

Definition 3. (Candidate itemset) Given a transaction database D, a
minimal support threshold σ, and an algorithm that computes F(D, σ), an
itemset I is called a candidate if that algorithm evaluates whether I is fre-
quent or not.

Obviously, the size of a collection of candidate itemsets may not exceed
the size of available main memory. Moreover, it is important to generate
as few candidate itemsets as possible, since computing the supports of a
collection of itemsets is a time consuming procedure. In the best case, only
the frequent itemsets are generated and counted. Unfortunately, this ideal
is impossible in general, which will be shown later in this section. The
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main underlying property exploited by most algorithms is that support is
monotone decreasing with respect to extension of an itemset.

Proposition 1. (Support monotonicity) Given a transaction database D
over I, let X, Y ⊆ I be two itemsets. Then,

X ⊆ Y ⇒ support(Y ) ≤ support(X).

Proof. This follows immediately from

cover(Y ) ⊆ cover(X).

Hence, if an itemset is infrequent, all of its supersets must be infrequent.
In the literature, this monotonicity property is also called the downward
closure property, since the set of frequent itemsets is closed with respect to
set inclusion.

The search space of all itemsets can be represented by a subset-lattice,
with the empty itemset at the top and the set containing all items at the
bottom. The collection of frequent itemsets F(D, σ) can be represented by
the collection of maximal frequent itemsets, or the collection of minimal
infrequent itemsets, with respect to set inclusion. For this purpose, Mannila
and Toivonen introduced the notion of the Border of a downward closed
collection of itemsets [26].

Definition 4. (Border) Let F be a downward closed collection of subsets of
I. The Border Bd(F) consists of those itemsets X ⊆ I such that all subsets
of X are in F , and no superset of X is in F :

Bd(F) := {X ⊆ I | ∀Y ⊂ X : Y ∈ F ∧ ∀Z ⊃ X : Z /∈ F}.

Those itemsets in Bd(F) that are in F are called the positive border Bd+(F):

Bd+(F) := {X ⊆ I | ∀Y ⊆ X : Y ∈ F ∧ ∀Z ⊃ X : Z /∈ F},

and those itemsets in Bd(F) that are not in F are called the negative border
Bd−(F):

Bd−(F) := {X ⊆ I | ∀Y ⊇ X : Y /∈ F ∧ ∀Z ⊇ X : Z /∈ F}.

The lattice for the frequent itemsets from Example 1, together with its
borders, is shown in Figure 1.

Several efficient algorithms have been proposed to find only the positive
border of all frequent itemsets, but if we want to know the supports of all
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{beer, pizza} {beer, wine}{beer, chips} {chips, pizza} {chips, wine} {pizza, wine}

{beer, chips, wine}{beer, chips, pizza} {beer, pizza, wine} {chips, pizza, wine}

{pizza}{chips} {wine}{beer}

{}

{beer, chips, pizza, wine} negative borderpositive border

Figure 1: The lattice for the itemsets of Example 1 and its border.

itemsets in the collection, we still need to count them. Therefore, these
algorithms are not discussed in this survey. From a theoretical point of view,
the border gives some interesting insights into the frequent itemset mining
problem, and still poses several interesting open problems [18, 26, 25].

Theorem 2. [26] Let D be a transaction database over I, and σ a minimal
support threshold. Finding the collection F(D, σ) requires that at least all
itemsets in the negative border Bd−(F) are evaluated.

Note that the number of itemsets in the positive or negative border of any
given downward closed collection of itemsets over I can still be large, but it
is bounded by

( |I|
b|I|/2c

)
. In combinatorics, this upper bound is well known as

Sperner’s theorem.
If the number of frequent itemsets for a given database is large, it could

become infeasible to generate them all. Moreover, if the transaction database
is dense, or the minimal support threshold is set too low, then there could
exist a lot of very large frequent itemsets, which would make sending them
all to the output infeasible to begin with. Indeed, a frequent itemset of size
k includes the existence of at least 2k − 1 other frequent itemsets, i.e. all
of its subsets. To overcome this problem, several proposals have been made
to generate only a concise representation of all frequent itemsets for a given
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transaction database such that, if necessary, the support of a frequent itemset
not in that representation can be efficiently computed or estimated without
accessing the database [24, 31, 12, 14, 15]. These techniques are based on
the observation that the support of some frequent itemsets can be deduced
from the supports of other itemsets. We will not discuss these algorithms in
this survey because all frequent itemsets need to be considered to generate
association rules anyway. Nevertheless, several of these techniques can still
be used to improve the performance of the algorithms that do generate all
frequent itemsets, as will be explained later in this chapter.

3.2 Database

To compute the supports of a collection of itemsets, we need to access the
database. Since such databases tend to be very large, it is not always possible
to store them into main memory.

An important consideration in most algorithms is the representation of
the transaction database. Conceptually, such a database can be represented
by a binary two-dimensional matrix in which every row represents an indi-
vidual transaction and the columns represent the items in I. Such a matrix
can be implemented in several ways. The most commonly used layout is the
horizontal data layout. That is, each transaction has a transaction identifier
and a list of items occurring in that transaction. Another commonly used
layout is the vertical data layout, in which the database consists of a set of
items, each followed by its cover [33, 41]. Table 4 shows both layouts for the
database from Example 1. Note that for both layouts, it is also possible to
use the exact bit-strings from the binary matrix [34, 29]. Also a combination
of both layouts can be used, as will be explained later in this chapter.

beer wine chips pizza
100 1 1 1 0
200 1 0 1 0
300 0 1 0 1
400 0 0 1 1

beer wine chips pizza
100 1 1 1 0
200 1 0 1 0
300 0 1 0 1
400 0 0 1 1

Table 4: Horizontal and Vertical database layout of D.

To count the support of an itemset X using the horizontal database lay-
out, we need to scan the database completely, and test for every transaction
T whether X ⊆ T . Of course, this can be done for a large collection of item-
sets at once. An important misconception about frequent pattern mining
is that scanning the database is a very I/O intensive operation. However,
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in most cases, this is not the major cost of such counting steps. Instead,
updating the supports of all candidate itemsets contained in a transaction
consumes considerably more time than reading that transaction from a file
or from a database cursor. Indeed, for each transaction, we need to check for
every candidate itemset whether it is included in that transaction, or simi-
larly, we need to check for every subset of that transaction whether it is in
the set of candidate itemsets. On the other hand, the number of transactions
in a database is often correlated to the maximal size of a transaction in the
database. As such, the number of transactions does have an influence on the
time needed for support counting, but it is by no means the dictating factor.

The vertical database layout has the major advantage that the support
of an itemset X can be easily computed by simply intersecting the covers of
any two subsets Y, Z ⊆ X, such that Y ∪ Z = X. However, given a set of
candidate itemsets, this technique requires that the covers of a lot of sets are
available in main memory, which is of course not always possible. Indeed,
the covers of all singleton itemsets already represent the complete database.

4 Association Rule Mining

The search space of all association rules contains exactly 3|I| different rules.
However, given all frequent itemsets, this search space immediately shrinks
tremendously. Indeed, for every frequent itemset I, there exists at most 2|I|

rules of the form X ⇒ Y , such that X ∪Y = I. Again, in order to efficiently
traverse this search space, sets of candidate association rules are iteratively
generated and evaluated, until all frequent and confident association rules
are found. The underlying technique to do this, is based on a similar mono-
tonicity property as was used for mining all frequent itemsets.

Proposition 3. (Confidence monotonicity) Let X, Y, Z ⊆ I be three
itemsets, such that X ∩ Y = {}. Then,

confidence(X \ Z ⇒ Y ∪ Z) ≤ confidence(X ⇒ Y ).

Proof. Since X ∪ Y ⊆ X ∪ Y ∪ Z, and X \ Z ⊆ X, we have

support(X ∪ Y ∪ Z)

support(X \ Z)
≤ support(X ∪ Y )

support(X)
.

In other words, confidence is monotone decreasing with respect to exten-
sion of the head of a rule. If an item in the extension is included in the body,
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{beer, chips, wine}=>{}

{chips, wine}=>{beer} {beer, wine}=>{chips} {beer, chips}=>{wine}

{wine}=>{beer, chips} {chips}=>{beer, wine}

{}=>{beer, chips, wine}

{beer}=>{chips, wine}

Figure 2: An example of a lattice representing a collection of association
rules for {beer, chips, wine}.

then it is removed from the body of that rule. Hence, if a certain head of
an association rule over an itemset I causes the rule to be unconfident, all of
the head’s supersets must result in unconfident rules.

As already mentioned in the problem description, the association rule
mining problem is actually more general than the frequent itemset mining
problem in the sense that every itemset I can be represented by the rule
I ⇒ {}, which holds with 100% confidence, given its support is not zero. On
the other hand, for every itemset I, the frequency of the rule {} ⇒ I equals
its confidence. Hence, if the frequency of I is above the minimal confidence
threshold, then so are all other association rules that can be constructed from
I.

For a given frequent itemset I, the search space of all possible association
rules X ⇒ Y , such that X ∪ Y = I, can be represented by a subset-lattice
with respect to the head of a rule, with the rule with an empty head at
the top and the rule with all items in the head at the bottom. Figure 2
shows such a lattice for the itemset {beer, chips, wine}, which was found to
be frequent on the artificial data set used in Example 4.

Given all frequent itemsets and their supports, the computation of all
frequent and confident association rules becomes relatively straightforward.
Indeed, to compute the confidence of an association rule X ⇒ Y , with X ∪
Y = I, we only need to find the supports of I and X, which can be easily
retrieved from the collection of frequent itemsets.
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Data set #Items #Transactions min|T | max|T | avg|T |
T40I10D100K 942 100 000 4 77 39
mushroom 119 8 124 23 23 23
BMS-Webview-1 497 59 602 1 267 2
basket 13 103 41 373 1 52 9

Table 5: Data Set Characteristics.

5 Example Data Sets

For all experiments we performed in this thesis, we used four data sets with
different characteristics. We have experimented using three real data sets,
of which two are publicly available, and one synthetic data set generated by
the program provided by the Quest research group at IBM Almaden [5]. The
mushroom data set contains characteristics of various species of mushrooms,
and was originally obtained from the UCI repository of machine learning
databases [10]. The BMS-WebView-1 data set contains several months worth
of clickstream data from an e-commerce web site, and is made publicly avail-
able by Blue Martini Software [23]. The basket data set contains transactions
from a Belgian retail store, but can unfortunately not be made publicly avail-
able. Table 5 shows the number of items and the number of transactions in
each data set, and the minimum, maximum and average length of the trans-
actions.

Additionally, Table 6 shows for each data set the lowest minimal support
threshold that was used in our experiments, the number of frequent items
and itemsets, and the size of the longest frequent itemset that was found.

Data set σ |F1| |F| max{k | |Fk| > 0}
T40I10D100K 700 804 550 126 18
mushroom 600 60 945 309 16
BMS-Webview-1 36 368 461 521 15
basket 5 8 051 285 758 11

Table 6: Data Set Characteristics.

6 The Apriori Algorithm

The first algorithm to generate all frequent itemsets and confident association
rules was the AIS algorithm by Agrawal et al. [3], which was given together
with the introduction of this mining problem. Shortly after that, the algo-
rithm was improved and renamed Apriori by Agrawal et al., by exploiting
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the monotonicity property of the support of itemsets and the confidence of
association rules [6, 36]. The same technique was independently proposed by
Mannila et al. [27]. Both works were cumulated afterwards [4].

6.1 Itemset Mining

For the remainder of this thesis, we assume for simplicity that items in trans-
actions and itemsets are kept sorted in their lexicographic order unless stated
otherwise.

The itemset mining phase of the Apriori algorithm is given in Algorithm 1.
We use the notation X[i], to represent the ith item in X. The k-prefix of an
itemset X is the k-itemset {X[1], . . . , X[k]}.

Algorithm 1 Apriori - Itemset mining
Input: D, σ
Output: F(D, σ)
1: C1 := {{i} | i ∈ I}
2: k := 1
3: while Ck 6= {} do
4: // Compute the supports of all candidate itemsets
5: for all transactions (tid , I) ∈ D do
6: for all candidate itemsets X ∈ Ck do
7: if X ⊆ I then
8: X.support++
9: end if

10: end for
11: end for
12: // Extract all frequent itemsets
13: Fk := {X | X.support ≥ σ}
14: // Generate new candidate itemsets
15: for all X,Y ∈ Fk, X[i] = Y [i] for 1 ≤ i ≤ k − 1, and X[k] < Y [k] do
16: I = X ∪ {Y [k]}
17: if ∀J ⊂ I, |J | = k : J ∈ Fk then
18: Ck+1 := Ck+1 ∪ I
19: end if
20: end for
21: k++
22: end while

The algorithm performs a breadth-first search through the search space
of all itemsets by iteratively generating candidate itemsets Ck+1 of size k+1,
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starting with k = 0 (line 1). An itemset is a candidate if all of its subsets are
known to be frequent. More specifically, C1 consists of all items in I, and at
a certain level k, all itemsets of size k + 1 in Bd−(Fk) are generated. This is
done in two steps. First, in the join step, Fk is joined with itself. The union
X ∪ Y of itemsets X, Y ∈ Fk is generated if they have the same k− 1-prefix
(lines 20–21). In the prune step, X ∪ Y is only inserted into Ck+1 if all of its
k-subsets occur in Fk (lines 22–24).

To count the supports of all candidate k-itemsets, the database, which
retains on secondary storage in the horizontal database layout, is scanned
one transaction at a time, and the supports of all candidate itemsets that
are included in that transaction are incremented (lines 6–12). All itemsets
that turn out to be frequent are inserted into Fk (lines 14–18).

Note that in this algorithm, the set of all itemsets that were ever generated
as candidate itemsets, but turned out to be infrequent, is exactly Bd−(F).

If the number of candidate k + 1-itemsets is too large to retain into main
memory, the candidate generation procedure stops and the supports of all
generated candidates is computed as if nothing happened. But then, in
the next iteration, instead of generating candidate itemsets of size k + 2, the
remainder of all candidate k+1-itemsets is generated and counted repeatedly
until all frequent itemsets of size k + 1 are generated.

6.2 Association Rule Mining

Given all frequent itemsets, we can now generate all frequent and confident
association rules. The algorithm is very similar to the frequent itemset mining
algorithm and is given in Algorithm 2.

First, all frequent itemsets are generated using Algorithm 1. Then, every
frequent itemset I is divided into a candidate head Y and a body X = I \Y .
This process starts with Y = {}, resulting in the rule I ⇒ {}, which always
holds with 100% confidence (line 4). After that, the algorithm iteratively
generates candidate heads Ck+1 of size k + 1, starting with k = 0 (line 5).
A head is a candidate if all of its subsets are known to represent confident
rules. This candidate head generation process is exactly like the candidate
itemset generation in Algorithm 1 (lines 11–16). To compute the confidence
of a candidate head Y , the support of I and X is retrieved from F . All heads
that result in confident rules are inserted into Hk (line 9). In the end, all
confident rules are inserted into R (line 20).

It can be seen that this algorithm does not fully exploit the monotonic-
ity of confidence. Given an itemset I and a candidate head Y , representing
the rule I \ Y ⇒ Y , the algorithm checks for all Y ′ ⊂ Y whether the rule
I \ Y ′ ⇒ Y ′ is confident, but not whether the rule I \ Y ⇒ Y ′ is confi-
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Algorithm 2 Apriori - Association Rule mining
Input: D, σ, γ
Output: R(D, σ, γ)
1: Compute F(D, σ)
2: R := {}
3: for all I ∈ F do
4: R := R∪ I ⇒ {}
5: C1 := {{i} | i ∈ I};
6: k := 1;
7: while Ck 6= {} do
8: // Extract all heads of confident association rules
9: Hk := {X ∈ Ck | confidence(I \X ⇒ X,D) ≥ γ}

10: // Generate new candidate heads
11: for all X, Y ∈ Hk, X[i] = Y [i] for 1 ≤ i ≤ k − 1, and X[k] < Y [k]

do
12: I = X ∪ {Y [k]}
13: if ∀J ⊂ I, |J | = k : J ∈ Hk then
14: Ck+1 := Ck+1 ∪ I
15: end if
16: end for
17: k++
18: end while
19: // Cumulate all association rules
20: R := R∪ {I \X ⇒ X | X ∈ H1 ∪ · · · ∪Hk}
21: end for
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dent. Nevertheless, this is perfectly possible if all rules are generated from
an itemset I, only if all rules are already generated for all itemsets I ′ ⊂ I.

However, exploiting monotonicity as much as possible is not always the
best solution. Since computing the confidence of a rule only requires the
lookup of the support of at most 2 itemsets, it might even be better not
to exploit the confidence monotonicity at all and simply remove the prune
step from the candidate generation process, i.e., remove lines 13 and 15. Of
course, this depends on the efficiency of finding the support of an itemset or
a head in the used data structures.

Luckily, if the number of frequent and confident association rules is not
too large, then the time needed to find all such rules consists mainly of the
time that was needed to find all frequent sets.

Since the proposal of this algorithm for the association rule generation
phase, no significant optimizations have been proposed anymore and almost
all research has been focused on the frequent itemset generation phase.

6.3 Data Structures

The candidate generation and the support counting processes require an
efficient data structure in which all candidate itemsets are stored since it is
important to efficiently find the itemsets that are contained in a transaction
or in another itemset.

6.3.1 Hash-tree

In order to efficiently find all k-subsets of a potential candidate itemset, all
frequent itemsets in Fk are stored in a hash table.

Candidate itemsets are stored in a hash-tree [4]. A node of the hash-tree
either contains a list of itemsets (a leaf node) or a hash table (an interior
node). In an interior node, each bucket of the hash table points to another
node. The root of the hash-tree is defined to be at depth 1. An interior node
at depth d points to nodes at depth d + 1. Itemsets are stored in leaves.

When we add a k-itemset X during the candidate generation process,
we start from the root and go down the tree until we reach a leaf. At an
interior node at depth d, we decide which branch to follow by applying a
hash function to the X[d] item of the itemset, and following the pointer in
the corresponding bucket. All nodes are initially created as leaf nodes. When
the number of itemsets in a leaf node at depth d exceeds a specified threshold,
the leaf node is converted into an interior node, only if k > d.

In order to find the candidate-itemsets that are contained in a transaction
T , we start from the root node. If we are at a leaf, we find which of the
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itemsets in the leaf are contained in T and increment their support. If we
are at an interior node and we have reached it by hashing the item i, we hash
on each item that comes after i in T and recursively apply this procedure to
the node in the corresponding bucket. For the root node, we hash on every
item in T .

6.3.2 Trie

Another data structure that is commonly used is a trie (or prefix-tree) [8,
11, 13, 9]. In a trie, every k-itemset has a node associated with it, as does
its k − 1-prefix. The empty itemset is the root node. All the 1-itemsets
are attached to the root node, and their branches are labelled by the item
they represent. Every other k-itemset is attached to its k − 1-prefix. Every
node stores the last item in the itemset it represents, its support, and its
branches. The branches of a node can be implemented using several data
structures such as a hash table, a binary search tree or a vector.

At a certain iteration k, all candidate k-itemsets are stored at depth k
in the trie. In order to find the candidate-itemsets that are contained in
a transaction T , we start at the root node. To process a transaction for
a node of the trie, (1) follow the branch corresponding to the first item in
the transaction and process the remainder of the transaction recursively for
that branch, and (2) discard the first item of the transaction and process it
recursively for the node itself. This procedure can still be optimized, as is
described in [11].

Also the join step of the candidate generation procedure becomes very
simple using a trie, since all itemsets of size k with the same k − 1-prefix
are represented by the branches of the same node (that node represents the
k − 1-prefix). Indeed, to generate all candidate itemsets with k − 1-prefix
X, we simply copy all siblings of the node that represents X as branches of
that node. Moreover, we can try to minimize the number of such siblings by
reordering the items in the database in support ascending order [11, 13, 9].
Using this heuristic, we reduce the number of itemsets that is generated
during the join step, and hence, we implicitly reduce the number of times
the prune step needs to be performed. Also, to find the node representing
a specific k-itemset in the trie, we have to perform k searches within a set
of branches. Obviously, the performance of such a search can be improved
when these sets are kept as small as possible.

An in depth study on the implementation details of a trie for Apriori can
be found in [11].

All implementations of all frequent itemsets mining algorithms presented
in this thesis are implemented using this trie data structure.

17



6.4 Optimizations

A lot of other algorithms proposed after the introduction of Apriori retain the
same general structure, adding several techniques to optimize certain steps
within the algorithm. Since the performance of the Apriori algorithm is
almost completely dictated by its support counting procedure, most research
has focused on that aspect of the Apriori algorithm. As already mentioned
before, the performance of this procedure is mainly dependent on the number
of candidate itemsets that occur in each transaction.

6.4.1 AprioriTid, AprioriHybrid

Together with the proposal of the Apriori algorithm, Agrawal et al. [6, 4] pro-
posed two other algorithms, AprioriTid and AprioriHybrid. The AprioriTid
algorithm reduces the time needed for the support counting procedure by
replacing every transaction in the database by the set of candidate itemsets
that occur in that transaction. This is done repeatedly at every iteration k.
The adapted transaction database is denoted by Ck. The algorithm is given
in Algorithm 3.

More implementation details of this algorithm can be found in [7]. Al-
though the AprioriTid algorithm is much faster in later iterations, it performs
much slower than Apriori in early iterations. This is mainly due to the addi-
tional overhead that is created when Ck does not fit into main memory and
has to be written to disk. If a transaction does not contain any candidate
k-itemsets, then Ck will not have an entry for this transaction. Hence, the
number of entries in Ck may be smaller than the number of transactions in
the database, especially at later iterations of the algorithm. Additionally, at
later iterations, each entry may be smaller than the corresponding transaction
because very few candidates may be contained in the transaction. However,
in early iterations, each entry may be larger than its corresponding transac-
tion. Therefore, another algorithm, AprioriHybrid, has been proposed [6, 4]
that combines the Apriori and AprioriTid algorithms into a single hybrid.
This hybrid algorithm uses Apriori for the initial iterations and switches
to AprioriTid when it is expected that the set Ck fits into main memory.
Since the size of Ck is proportional with the number of candidate itemsets,
a heuristic is used that estimates the size that Ck would have in the current
iteration. If this size is small enough and there are fewer candidate patterns
in the current iteration than in the previous iteration, the algorithm decides
to switch to AprioriTid. Unfortunately, this heuristic is not airtight as will
be shown in Chapter 4. Nevertheless, AprioriHybrid performs almost always
better than Apriori.
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Algorithm 3 AprioriTid
Input: D, σ
Output: F(D, σ)
1: Compute F1 of all frequent items
2: C1 := D (with all items not in F1 removed)
3: k := 2
4: while Fk−1 6= {} do
5: Compute Ck of all candidate k-itemsets
6: Ck := {}
7: // Compute the supports of all candidate itemsets
8: for all transactions (tid , T ) ∈ Ck do
9: CT := {}

10: for all X ∈ Ck do
11: if {X[1], . . . , X[k−1]} ∈ T ∧{X[1], . . . , X[k−2], X[k]} ∈ T then
12: CT := CT ∪ {X}
13: X.support++
14: end if
15: end for
16: if CT 6= {} then
17: Ck := Ck ∪ {(tid , CT )}
18: end if
19: end for
20: Extract Fk of all frequent k-itemsets
21: k++
22: end while
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6.4.2 Counting candidate 2-itemsets

Shortly after the proposal of the Apriori algorithms described before, Park et
al. proposed another optimization, called DHP (Direct Hashing and Pruning)
to reduce the number of candidate itemsets [30]. During the kth iteration,
when the supports of all candidate k-itemsets are counted by scanning the
database, DHP already gathers information about candidate itemsets of size
k + 1 in such a way that all (k + 1)-subsets of each transaction after some
pruning are hashed to a hash table. Each bucket in the hash table consists of
a counter to represent how many itemsets have been hashed to that bucket so
far. Then, if a candidate itemset of size k +1 is generated, the hash function
is applied on that itemset. If the counter of the corresponding bucket in the
hash table is below the minimal support threshold, the generated itemset is
not added to the set of candidate itemsets. Also, during the support counting
phase of iteration k, every transaction trimmed in the following way. If a
transaction contains a frequent itemset of size k + 1, any item contained in
that k +1 itemset will appear in at least k of the candidate k-itemsets in Ck.
As a result, an item in transaction T can be trimmed if it does not appear
in at least k of the candidate k-itemsets in Ck. These techniques result in
a significant decrease in the number of candidate itemsets that need to be
counted, especially in the second iteration. Nevertheless, creating the hash
tables and writing the adapted database to disk at every iteration causes a
significant overhead.

Although DHP was reported to have better performance than Apriori and
AprioriHybrid, this claim was countered by Ramakrishnan if the following
optimization is added to Apriori [35]. Instead of using the hash-tree to store
and count all candidate 2-itemsets, a triangular array C is created, in which
the support counter of a candidate 2-itemset {i, j} is stored at location C[i][j].
Using this array, the support counting procedure reduces to a simple two-
level for-loop over each transaction. A similar technique was later used by
Orlando et al. in their DCP and DCI algorithms [28, 29].

Since the number of candidate 2-itemsets is exactly
(|F1|

2

)
, it is still possi-

ble that this number is too large, such that only part of the structure can be
generated and multiple scans over the database need to be performed. Nev-
ertheless, from experience, we discovered that a lot of candidate 2-itemsets
do not even occur at all in the database, and hence, their support remains 0.
Therefore, we propose the following optimization. When all single items are
counted, resulting in the set of all frequent items F1, we do not generate any
candidate 2-itemset. Instead, we start scanning the database, and remove
from each transaction all items that are not frequent, on the fly. Then, for
each trimmed transaction, we increase the support of all candidate 2-itemsets
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contained in that transaction. However, if the candidate 2-itemset does not
yet exists, we generate the candidate itemset and initialize its support to 1.
In this way, only those candidate 2-itemsets that occur at least once in the
database are generated. For example, this technique was especially useful for
the basket data set used in our experiments, since in that data set there exist
8 051 frequent items, and hence Apriori would generate

(
8 051

2

)
= 32 405 275

candidate 2-itemsets. Using this technique, this number was drastically re-
duced to 1 708 203.

6.4.3 Support lower bounding

As we already mentioned earlier in this chapter, apart from the monotonicity
property, it is sometimes possible to derive information on the support of an
itemset, given the support of all of its subsets. The first algorithm that uses
such a technique was proposed by Bayardo in his MaxMiner and Apriori-LB
algorithms [9]. The presented technique is based on the following property
which gives a lower bound on the support of an itemset.

Proposition 4. Let X,Y, Z ⊆ I be itemsets.

support(X ∪ Y ∪ Z) ≥ support(X ∪ Y ) + support(X ∪ Z)− support(X)

Proof.

support(X ∪ Y ∪ Z) = |cover(X ∪ Y ) ∩ cover(X ∪ Z)|
= |cover(X ∪ Y ) \ (cover(X ∪ Y ) \ cover(X ∪ Z))|
≥ |cover(X ∪ Y ) \ (cover(X) \ cover(X ∪ Z))|
≥ |cover(X ∪ Y )| − |(cover(X) \ cover(X ∪ Z))|
= |cover(X ∪ Y )| − (|cover(X)| − |cover(X ∪ Z)|)
= support(X ∪ Y ) + support(X ∪ Z)− support(X)

In practice, this lower bound can be used in the following way. Every
time a candidate k + 1-itemset is generated by joining two of its subsets of
size k, we can easily compute this lower bound for that candidate. Indeed,
suppose the candidate itemset X∪{i1, i2} is generated by joining X∪{i1} and
X ∪ {i2}, we simply add up the supports of these two itemsets and subtract
the support of X. If this lower bound is higher than the minimal support
threshold, then we already know that it is frequent and hence, we can already
generate candidate itemsets of larger sizes for which this lower bound can
again be computed. Nevertheless, we still need to count the exact supports
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of all these itemsets, but this can be done all at once during the support
counting procedure. Using the efficient support counting mechanism as we
described before, this optimization could result in significant performance
improvements.

Additionally, we can exploit a special case of Proposition 4 even more.

Corollary 5. Let X, Y, Z ⊆ I be itemsets.

support(X ∪ Y ) = support(X) ⇒ support(X ∪ Y ∪ Z) = support(X ∪ Z)

This specific property was later exploited by Pasquier et al. in order to
find a concise representation of all frequent itemsets [31, 12]. Nevertheless,
it can already be used to improve the Apriori algorithm.

Suppose we have generated and counted the support of the frequent item-
set X∪{i} and that its support is equal to the support of X. Then we already
know that the supports of every superset X ∪{i}∪Y is equal to the support
of X ∪ Y and hence, we do not have to generate all such supersets anymore,
but only have to keep the information that every superset of X ∪ {i} is also
represented by a superset of X.

Recently, Calders and Goethals presented a generalization of all these
techniques resulting in a system of deduction rules that derive tight bounds
on the support of candidate itemsets [15]. These deduction rules allow for
constructing a minimal representation of all frequent itemsets, but can also
be used to efficiently generate the set of all frequent itemsets. Unfortunately,
for a given candidate itemset, an exponential number of rules in the length
of the itemset need to be evaluated. The rules presented in this section,
which are part of the complete set of derivation rules, are shown to result
in significant performance improvements, while the other rules only show a
marginal improvement.

6.4.4 Combining passes

Another improvement of the Apriori algorithm, which is part of the folklore,
tries to combine as many iterations as possible in the end, when only few can-
didate patterns can still be generated. The potential of such a combination
technique was realized early on [6], but the modalities under which it can be
applied were never further examined. In Chapter 4, we study this problem
and provide several upper bounds on the number of candidate itemsets that
can yet be generated after a certain iteration in the Apriori algorithm.
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6.4.5 Dynamic Itemset Counting

The DIC algorithm, proposed by Brin et al. tries to reduce the number of
passes over the database by dividing the database into intervals of a specific
size [13]. First, all candidate patterns of size 1 are generated. The supports
of the candidate sets are then counted over the first interval of the database.
Based on these supports, a new candidate pattern of size 2 is already gener-
ated if all of its subsets are already known to be frequent, and its support is
counted over the database together with the patterns of size 1. In general,
after every interval, candidate patterns are generated and counted. The algo-
rithm stops if no more candidates can be generated and all candidates have
been counted over the complete database. Although this method drastically
reduces the number of scans through the database, its performance is also
heavily dependent on the distribution of the data.

Although the authors claim that the performance improvement of re-
ordering all items in support ascending order is negligible, this is not true
for Apriori in general. Indeed, the reordering used in DIC was based on the
supports of the 1-itemsets that were computed only in the first interval. Ob-
viously, the success of this heuristic also becomes highly dependent on the
distribution of the data.

The CARMA algorithm (Continuous Association Rule Mining Algorithm),
proposed by Hidber [21] uses a similar technique, reducing the interval size
to 1. More specifically, candidate itemsets are generated on the fly from ev-
ery transaction. After reading a transaction, it increments the supports of all
candidate itemsets contained in that transaction and it generates a new can-
didate itemset contained in that transaction, if all of its subsets are suspected
to be relatively frequent with respect to the number of transactions that has
already been processed. As a consequence, CARMA generates a lot more
candidate itemsets than DIC or Apriori. (Note that the number of candidate
itemsets generated by DIC is exactly the same as in Apriori.) Additionally,
CARMA allows the user to change the minimal support threshold during
the execution of the algorithm. After the database has been processed once,
CARMA is guaranteed to have generated a superset of all frequent item-
sets relative to some threshold which depends on how the user changed the
minimal support threshold during its execution. However, when the mini-
mal support threshold was kept fixed during the complete execution of the
algorithm, at least all frequent itemsets have been generated. To determine
the exact supports of all generated itemsets, a second scan of the database
is required.
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6.4.6 Sampling

The sampling algorithm, proposed by Toivonen [39], performs at most two
scans through the database by picking a random sample from the database,
then finding all relatively frequent patterns in that sample, and then verifying
the results with the rest of the database. In the cases where the sampling
method does not produce all frequent patterns, the missing patterns can be
found by generating all remaining potentially frequent patterns and verifying
their supports during a second pass through the database. The probability of
such a failure can be kept small by decreasing the minimal support threshold.
However, for a reasonably small probability of failure, the threshold must
be drastically decreased, which can cause a combinatorial explosion of the
number of candidate patterns.

6.4.7 Partitioning

The Partition algorithm, proposed by Savasere et al. uses an approach which
is completely different from all previous approaches [33]. That is, the database
is stored in main memory using the vertical database layout and the support
of an itemset is computed by intersecting the covers of two of its subsets.
More specifically, for every frequent item, the algorithm stores its cover. To
compute the support of a candidate k-itemset I, which is generated by join-
ing two of its subsets X, Y as in the Apriori algorithm, it intersects the covers
of X and Y , resulting in the cover of I.

Of course, storing the covers of all items actually means that the com-
plete database is read into main memory. For large databases, this could be
impossible. Therefore, the Partition algorithm uses the following trick. The
database is partitioned into several disjoint parts and the algorithm gener-
ates for every part all itemsets that are relatively frequent within that part,
using the algorithm described in the previous paragraph and shown in Algo-
rithm 4. The parts of the database are chosen in such a way that each part
fits into main memory on itself.

The algorithm merges all relatively frequent itemsets of every part to-
gether. This results in a superset of all frequent itemsets over de complete
database, since an itemset that is frequent in the complete database must
be relatively frequent in one of the parts. Then, the actual supports of all
itemsets are computed during a second scan through the database. Again,
every part is read into main memory using the vertical database layout and
the support of every itemset is computed by intersecting the covers of all
items occurring in that itemset. The exact Partition algorithm is given in
Algorithm 5.
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Algorithm 4 Partition - Local Itemset Mining
Input: D, σ
Output: F(D, σ)
1: Compute F1 and store with every frequent item its cover
2: k := 2
3: while Fk−1 6= {} do
4: Fk := {}
5: for all X, Y ∈ Fk−1, X[i] = Y [i] for 1 ≤ i ≤ k − 2, and X[k − 1] <

Y [k − 1] do
6: I = {X[1], . . . , X[k − 1], Y [k − 1]}
7: if ∀J ⊂ I : J ∈ Fk−1 then
8: I.cover := X.cover ∩ Y.cover
9: if |I.cover | ≥ σ then

10: Fk := Fk ∪ I
11: end if
12: end if
13: end for
14: k++
15: end while

Algorithm 5 Partition
Input: D, σ
Output: F(D, σ)
1: Partition D in D1, . . . , Dn

2: // Find all local frequent itemsets
3: for 1 ≤ p ≤ n do
4: Compute Cp := F(Dp, dσrel · |Dp|e)
5: end for
6: // Merge all local frequent itemsets
7: Cglobal :=

⋃
1≤p≤n Cp

8: // Compute actual support of all itemsets
9: for 1 ≤ p ≤ n do

10: Generate cover of each item in Dp

11: for all I ∈ Cglobal do
12: I.support := I.support + |I[1].cover ∩ · · · ∩ I[|I|].cover |
13: end for
14: end for
15: // Extract all global frequent itemsets
16: F := {I ∈ Cglobal | I.support ≥ σ}
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The exact computation of the supports of all itemsets can still be op-
timized, but we refer to the original article for further implementation de-
tails [33].

Although the covers of all items can be stored in main memory, during
the generation of all local frequent itemsets for every part, it is still possible
that the covers of all local candidate k-itemsets can not be stored in main
memory. Also, the algorithm is highly dependent on the heterogeneity of the
database and can generate too many local frequent itemsets, resulting in a
significant decrease in performance. However, if the complete database fits
into main memory and the total of all covers at any iteration also does not
exceed main memory limits, then the database must not be partitioned at
all and outperforms Apriori by several orders of magnitude. Of course, this
is mainly due to the fast intersection based counting mechanism.

7 Depth-First Algorithms

As explained in the previous section, the intersection based counting mech-
anism made possible by using the vertical database layout shows significant
performance improvements. However, this is not always possible since the
total size of all covers at a certain iteration of the local itemset generation
procedure could exceed main memory limits. Nevertheless, it is possible to
significantly reduce this total size by generating collections of candidate item-
sets in a depth-first strategy. The first algorithm proposed to generate all fre-
quent itemsets in a depth-first manner is the Eclat algorithm by Zaki [41, 44].
Later, several other depth-first algorithms have been proposed [1, 2, 20] of
which the FP-growth algorithm by Han et al. [20, 19] is the most well known.
In this section, we explain both the Eclat and FP-growth algorithms.

Given a transaction database D and a minimal support threshold σ, de-
note the set of all frequent k-itemsets with the same k − 1-prefix I ⊆ I by
F [I](D, σ). (Note that F [{}](D, σ) = F(D, σ).) Both Eclat and FP-growth
recursively generate for every item i ∈ I the set F [{i}](D, σ).

For the sake of simplicity and presentation, we assume that all items
that occur in the transaction database are frequent. In practice, all frequent
items can be computed during an initial scan over the database, after which
all infrequent items will be ignored.

7.1 Eclat

Eclat uses the vertical database layout and uses the intersection based ap-
proach to compute the support of an itemset. The Eclat algorithm is given
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in Algorithm 6.

Algorithm 6 Eclat
Input: D, σ, I ⊆ I
Output: F [I](D, σ)
1: F [I] := {}
2: for all i ∈ I occurring in D do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: // Create Di

5: Di := {}
6: for all j ∈ I occurring in D such that j > i do
7: C := cover({i}) ∩ cover({j})
8: if |C| ≥ σ then
9: Di := Di ∪ {(j, C)}

10: end if
11: end for
12: // Depth-first recursion
13: Compute F [I ∪ {i}](Di, σ)
14: F [I] := F [I] ∪ F [I ∪ {i}]
15: end for

Note that a candidate itemset is now represented by each set I ∪ {i, j}
of which the support is computed at line 6 of the algorithm. Since the
algorithm doesn’t fully exploit the monotonicity property, but generates a
candidate itemset based on only two of its subsets, the number of candidate
itemsets that are generated is much larger as compared to the breadth-first
approaches presented in the previous section. As a comparison, Eclat es-
sentially generates candidate itemsets using only the join step from Apriori,
since the itemsets necessary for the prune step are not available. Again, we
can reorder all items in the database in support ascending order to reduce
the number of candidate itemsets that is generated, and hence, reduce the
number of intersections that need to be computed and the total size of the
covers of all generated itemsets. In fact, such reordering can be performed
at every recursion step of the algorithm between line 10 and line 11 in the
algorithm. In comparison with Apriori, counting the supports of all itemsets
is performed much more efficiently. In comparison with Partition, the total
size of all covers that is kept in main memory is on average much less. Indeed,
in the breadth-first approach, at a certain iteration k, all frequent k-itemsets
are stored in main memory together with their covers. On the other hand,
in the depth-first approach, at a certain depth d, the covers of at most all
k-itemsets with the same k−1-prefix are stored in main memory, with k ≤ d.
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Because of the item reordering, this number is kept small.
Recently, Zaki and Gouda [42, 43] proposed a new approach to efficiently

compute the support of an itemset using the vertical database layout. Instead
of storing the cover of a k-itemset I, the difference between the cover of I
and the cover of the k − 1-prefix of I is stored, denoted by the diffset of
I. To compute the support of I, we simply need to subtract the size of the
diffset from the support of its k − 1-prefix. Note that this support does not
need to be stored within each itemset but can be maintained as a parameter
within the recursive function calls of the algorithm. The diffset of an itemset
I ∪{i, j}, given the two diffsets of its subsets I ∪{i} and I ∪{j}, with i < j,
is computed as follows:

diffset(I ∪ {i, j}) := diffset(I ∪ {j}) \ diffset(I ∪ {i}).

This technique has experimentally shown to result in significant performance
improvements of the algorithm, now designated as dEclat [42]. The original
database is still stored in the original vertical database layout. Observe an
arbitrary recursion path of the algorithm starting from the itemset {i1}, up
to the k-itemset I = {i1, . . . , ik}. The itemset {i1} has stored its cover and
for each recursion step that generates a subset of I, we compute its diffset.
Obviously, the total size of all diffsets generated on the recursion path can
be at most |cover({i1})|. On the other hand, if we generate the cover of each
generated itemset, the total size of all generated covers on that path is at
least (k− 1) · σ and can be at most (k− 1) · |cover({i1})|. Of course, not all
generated diffsets or covers are stored during all recursions, but only for the
last two of them. This observation indicates that the total size of all diffsets
that are stored in main memory at a certain point in the algorithm is less
than the total size of all covers. These predictions were supported by several
experiments [42].

Using this depth-first approach, it remains possible to exploit a technique
presented as an optimization of the Apriori algorithm in the previous section.
More specifically, suppose we have generated and counted the support of the
frequent itemset X ∪ {i} and that its support is equal to the support of X
(hence, its diffset is empty). Then we already know that the support of every
superset X ∪ {i} ∪ Y is equal to the support of X ∪ Y and hence, we do not
have to generate all such supersets anymore, but only have to retain the
information that every superset of X ∪ {i} is also represented by a superset
of X.

If the database does not fit into main memory, the Partition algorithm
can be used in which the local frequent itemsets are found using Eclat.

Another optimization proposed by Hipp et al. combines Apriori and Eclat
into a single Hybrid [22]. More specifically, the algorithm starts generating
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frequent itemsets in a breadth-first manner using Apriori, and switches after
a certain iteration to a depth-first strategy using Eclat. The exact switching
point must be given by the user. The main performance improvement of
this strategy occurs at the generation of all candidate 2-itemsets if these are
generated online as described in Section 6.4. Indeed, when a lot of items in
the database are frequent, Eclat generates every possible 2-itemset whether or
not it occurs in the database. On the other hand, if the transaction database
contains a lot of large transactions of frequent items, such that Apriori needs
to generate all its subsets of size 2, Eclat still outperforms Apriori. Of course,
as long as the number of transactions that still contain candidate itemsets is
too high to store into main memory, switching to Eclat might be impossible,
while Apriori nicely marches on.

7.2 FP-growth

In order to count the supports of all generated itemsets, FP-growth uses
a combination of the vertical and horizontal database layout to store the
database in main memory. Instead of storing the cover for every item the
database, it stores the actual transactions from the database in a trie struc-
ture and every item has a linked list going through all transactions that
contain that item. This new data structure is denoted by FP-tree (Frequent-
Pattern tree) and is created as follows [20]. Again, we order the items in the
database in support ascending order for the same reasons as before. First,
create the root node of the tree, labelled with “null”. For each transaction
in the database, the items are processed in reverse order (hence, support
descending) and a branch is created for each transaction. Every node in the
FP-tree additionally stores a counter which keeps track of the number of
transactions that share that node. Specifically, when considering the branch
to be added for a transaction, the count of each node along the common prefix
is incremented by 1, and nodes for the items in the transaction following the
prefix are created and linked accordingly. Additionally, an item header table
is built so that each item points to its occurrences in the tree via a chain of
node-links. Each item in this header table also stores its support. The reason
to store transactions in the FP-tree in support descending order is that in
this way, it is hoped that the FP-tree representation of the database is kept
as small as possible since the more frequently occurring items are arranged
closer to the root of the FP-tree and thus are more likely to be shared.

Example 2. Assume we are given a transaction database and a minimal
support threshold of 2. First, the supports of all items is computed, all
infrequent items are removed from the database and all transactions are
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tid X
100 {a, b, c, d, e, f}
200 {a, b, c, d, e}
300 {a, d}
400 {b, d, f}
500 {a, b, c, e, f}

Table 7: An example preprocessed transaction database.

reordered according to the support descending order resulting in the example
transaction database in Table 7. The FP-tree for this database is shown in
Figure 3.

Given such an FP-tree, the supports of all frequent items can be found
in the header table. Obviously, the FP-tree is just like the vertical and hori-
zontal database layouts a lossless representation of the complete transaction
database for the generation of frequent itemsets. Indeed, every linked list
starting from an item in the header table actually represents a compressed
form of the cover of that item. On the other hand, every branch starting
from the root node represents a compressed form of a set of transactions.

Apart from this FP-tree, the FP-growth algorithm is very similar to Eclat,
but it uses some additional steps to maintain the FP-tree structure during the
recursion steps, while Eclat only needs to maintain the covers of all generated
itemsets. More specifically, in order to generate for every i ∈ I all frequent
itemsets in F [{i}](D, σ), FP-growth creates the so called i-projected database
of D. Essentially, the Di used in Eclat is the vertical database layout of the
i-projected database considered here. The FP-growth algorithm is given in
Algorithm 7.

The only difference between Eclat an FP-growth is the way they count the
supports of every candidate itemset and how they represent and maintain the
i-projected database. I.e., only lines 5–10 of the Eclat algorithm are renewed.
First, FP-growth computes all frequent items for Di at lines 6–10, which is
of course different in every recursion step. This can be efficiently done by
simply following the linked list starting from the entry of i in the header table.
Then at every node in the FP-tree it follows its path up to the root node and
increments the support of each item it passes by its count. Then, at lines
11–13, the FP-tree for the i-projected database is built for those transactions
in which i occurs, intersected with the set of all frequent items in D greater
than i. These transactions can be efficiently found by following the node-
links starting from the entry of item i in the header table and following the
path from every such node up to the root of the FP-tree and ignoring all
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Algorithm 7 FP-growth
Input: D, σ, I ⊆ I
Output: F [I](D, σ)
1: F [I] := {}
2: for all i ∈ I occurring in D do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: // Create Di

5: Di := {}
6: H := {}
7: for all j ∈ I occurring in D such that j > i do
8: if support(I ∪ {i, j}) ≥ σ then
9: H := H ∪ {j}

10: end if
11: end for
12: for all (tid , X) ∈ D with i ∈ X do
13: Di := Di ∪ {(tid, X ∩H)}
14: end for
15: // Depth-first recursion
16: Compute F [I ∪ {i}](Di, σ)
17: F [I] := F [I] ∪ F [I ∪ {i}]
18: end for

31



b:3

c:3

d:1e:2

d:1

b:1

d:1

f:1

a:4

null

e:1f:2

item

node−link

support

header table

a

b

c

d

e

f

4

3

3

3

3

4

Figure 3: An example of an FP-tree.

items that are not in H. If this node has count n, then the transaction is
added n times. Of course, this is implemented by simply incrementing the
counters, on the path of this transaction in the new i-projected FP-tree,
by n. However, this technique does require that every node in the FP-tree
also stores a link to its parent. Additionally, we can also use the technique
that generates only those candidate itemsets that occur at least once in the
database. Indeed, we can dynamically add a counter initialized to 1 for every
item that occurs on each path in the FP-tree that is traversed.

These steps can be further optimized as follows. Suppose that the FP-
tree consists of a single path. Then, we can stop the recursion and simply
enumerate every combination of the items occurring on that path with the
support set to the minimum of the supports of the items in that combina-
tion. Essentially, this technique is similar to the technique used by all other
algorithms when the support of an itemset is equal to the support of any
of its subsets. However, FP-growth is able to detect this one recursion step
ahead of Eclat.

As can be seen, at every recursion step, an item j occurring in Di actually
represents the itemset I ∪ {i, j}. In other words, for every frequent item i
occurring in D, the algorithm recursively finds all frequent 1-itemsets in the
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Data set ||D|| |FP-tree| |cover |
|FP-tree|

T40I10D100K 3 912 459 : 15 283K 3 514 917 : 68 650K 89% : 174%
mushroom 174 332 : 680K 16 354 : 319K 9% : 46%
BMS-Webview-1 148 209 : 578K 55 410 : 1 082K 37% : 186%
basket 399 838 : 1 561K 294 311 : 5 748K 73% : 368%

Table 8: Memory usage of Eclat versus FP-growth.

i-projected database Di.
Although the authors of the FP-growth algorithm claim that their al-

gorithm [19, 20] does not generate any candidate itemsets, we have shown
that the algorithm actually generates a lot more candidate itemsets since it
essentially uses the same candidate generation technique as is used in Apriori
but without its prune step.

The only main advantage FP-growth has over Eclat is that each linked
list, starting from an item in the header table representing the cover of that
item, is stored in a compressed form. Unfortunately, to accomplish this
gain, it needs to maintain a complex data structure and perform a lot of
dereferencing, while Eclat only has to perform simple and fast intersections.
Also, the intended gain of this compression might be much less than is hoped
for. In Eclat, the cover of an item can be implemented using an array of
transaction identifiers. On the other hand, in FP-growth, the cover of an
item is compressed using the linked list starting from its node-link in the
header table, but, every node in this linked list needs to store its label, a
counter, a pointer to the next node, a pointer to its branches and a pointer
to its parent. Therefore, the size of an FP-tree should be at most 20% of the
size of all covers in Eclat in order to profit from this compression. Table 8
shows for all four used data sets the size of the total length of all arrays
in Eclat (||D||), the total number of nodes in FP-growth (|FP-tree|) and
the corresponding compression rate of the FP-tree. Additionally, for each
entry, we show the size of the data structures in bytes and the corresponding
compression of the FP-tree.

As can be seen, the only data set for which FP-growth becomes an actual
compression of the database is the mushroom data set. For all other data sets,
there is no compression at all, on the contrary, the FP-tree representation is
often much larger than the plain array based representation.
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8 Experimental Evaluation

We implemented the Apriori implementation using the online candidate 2-
itemset generation optimization. Additionally, we implemented the Eclat,
Hybrid and FP-growth algorithms as presented in the previous section. All
these algorithms were implemented in C++ using several of the data struc-
tures provided by the C++ Standard Template Library [37]. All experiments
reported in this thesis were performed on a 400 MHz Sun Ultra Sparc 10 with
512 MB main memory, running Sun Solaris 8.

Figure 8 shows the performance of the algorithms on each of the data sets
described in Section 5 for varying minimal support thresholds.

The first interesting behavior can be observed in the experiments for the
basket data. Indeed, Eclat performs much worse than all other algorithms.
Nevertheless, this behavior has been predicted since the number of frequent
items in the basket data set is very large and hence, a huge amount of candi-
date 2-itemsets is generated. The other algorithms all use dynamic candidate
generation of 2-itemsets resulting in much better performance results. The
Hybrid algorithm performed best when Apriori was switched to Eclat after
the second iteration, i.e., when all frequent 2-itemsets were generated.

Another remarkable result is that Apriori performs better than FP-growth
for the basket data set. This result is due to the overhead created by the
maintenance of the FP-tree structure, while updating the supports of all
candidate itemsets contained in each transaction is performed very fast due
to the sparseness of this data set.

For the BMS-Webview-1 data set, the Hybrid algorithm again performed
best when switched after the second iteration. For all minimal support
thresholds higher than 40, the differences in performance are negligible and
are mainly due to the initialization and destruction routines of the used data
structures. For very low support thresholds, Eclat clearly outperforms all
other algorithms. The reason for the lousy performance of Apriori is because
of some very large transactions for which the subset generation procedure
for counting the supports of all candidate itemsets consumes most of the
time. To support this claim we did some additional experiments which in-
deed showed that only 34 transactions containing more than 100 frequent
items consumed most of the time of during the support counting of all can-
didate itemsets of sized 5 to 10. For example, counting the supports of all
7-itemsets takes 10 seconds of which 9 seconds were used for these 34 trans-
actions.

For the synthetic data set, all experiments showed the normal behavior
as was predicted by the analysis in this survey. However, this time, the
switching point for which the Hybrid algorithm performed best was after the
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third iteration.
Also the mushroom data set shows some interesting results. The perfor-

mance differences of Eclat and FP-growth are negligible and are again mainly
due to the differences in initialization and destruction. Obviously, because of
the small size of the database, both run extremely fast. Apriori on the other
hand runs extremely slow because each transaction contains exactly 23 items
and of which a many have very high supports. Here, the Hybrid algorithm
doesn’t perform well at all and only performed well when Apriori is not used
at all. We show the time of Hybrid when the switch is performed after the
second iteration.

9 Conclusions

Throughout the last decade, a lot of people have implemented and compared
several algorithms that try to solve the frequent itemset mining problem as ef-
ficiently as possible. Unfortunately, only a very small selection of researchers
put the source codes of their algorithms publicly available such that fair em-
pirical evaluations and comparisons of their algorithms become very difficult.
Moreover, we experienced that different implementations of the same algo-
rithms could still result in significantly different performance results. As a
consequence, several claims that were presented in some articles were later
contradicted in other articles. For example, a very often used implementa-
tion of the Apriori algorithm is that by Christian Borgelt [11]. Nevertheless,
when we compared his implementation with ours, the performance of both
algorithms showed immense differences. While Borgelt his implementation
performed much better for high support thresholds, it performed much worse
for small thresholds. This is mainly due to differences in the implementation
of some of the used data structures and procedures. Indeed, different compil-
ers and different machine architectures sometimes showed different behavior
for the same algorithms. Also different kinds of data sets on which the algo-
rithms were tested showed remarkable differences in the performance of such
algorithms. An interesting example of this is presented by Zheng et al. in
their article on the real world performance of association rule algorithms [45]
in which five well-known association rule mining algorithms are compared
on three new real-world data sets. They discovered different performance
behaviors of the algorithms as was previously claimed by their respective
authors.

In this survey, we presented an in depth analysis of a lot of algorithms
which made a significant contribution to improve the efficiency of frequent
itemset mining.
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We have shown that as long as the database fits in main memory, the Hy-
brid algorithm, as a combination of an optimized version of Apriori and Eclat
is by far the most efficient algorithm. However, for very dense databases, the
Eclat algorithm is still better.

If the database does not fit into memory, the best algorithm depends
on the density of the database. For sparse databases the Hybrid algorithm
seems the best choice if the switch from Apriori to Eclat is made as soon as
the database fits into main memory. For dense databases, we envisage that
the partition algorithm, using Eclat to compute all local frequent itemsets,
performs best.

For our experiments, we did not implement Apriori with all possible op-
timizations as presented in this survey. Nevertheless, the main cost of the
algorithm can be dictated by only a few very large transactions, for which
the presented optimizations will not always be sufficient.

Several experiments on four different data sets confirmed the reasoning
presented in the analysis of the various algorithms.
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