
Technical Standard

Service-Oriented Architecture Ontology

ii Technical Standard (2010)

Copyright © 2010, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the

copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the

specification. The intent of publication of the specification is to encourage implementations of the

specification.

This specification has not been verified for avoidance of possible third-party proprietary rights. In

implementing this specification, usual procedures to ensure the respect of possible third-party intellectual

property rights should be followed.

Technical Standard

Service-Oriented Architecture Ontology

ISBN: 1-931624-88-7

Document Number: C104

Published by The Open Group, October 2010.

Comments relating to the material contained in this document may be submitted to:

The Open Group

Thames Tower

37-45 Station Road

Reading

Berkshire, RG1 1LX

United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

mailto:ogspecs@opengroup.org

Service-Oriented Architecture Ontology iii

Contents

1 Introduction ... 1

1.1 Objective ... 1
1.2 Overview ... 1
1.3 Applications .. 3
1.4 Conformance ... 4
1.5 Terminology ... 4
1.6 Typographical Conventions .. 5
1.7 Future Directions .. 5

2 System and Element .. 6

2.1 Introduction ... 6
2.2 The Element Class .. 6
2.3 The uses and usedBy Properties ... 7
2.4 Element – Organizational Example .. 8
2.5 The System Class .. 8
2.6 System – Examples ... 9

2.6.1 Organizational Example .. 9
2.6.2 Service Composition Example .. 9
2.6.3 Car Wash Example .. 10

2.7 The represents and representedBy Properties 10
2.8 Examples ... 12

2.8.1 Organizational Example .. 12
2.8.2 Car Wash Example .. 12

3 HumanActor and Task .. 14

3.1 Introduction ... 14
3.2 The HumanActor Class ... 14
3.3 HumanActor – Examples .. 15

3.3.1 The uses and usedBy Properties Applied to

HumanActor .. 15
3.3.2 The represents and representedBy Properties Applied

to HumanActor .. 15
3.3.3 Organizational Example .. 16
3.3.4 Car Wash Example .. 16

3.4 The Task Class .. 16
3.5 The does and doneBy Properties .. 17
3.6 Task – Examples ... 18

3.6.1 The uses and usedBy Properties Applied to Task 18
3.6.2 The represents and representedBy Properties Applied

to Task ... 18
3.6.3 Organizational Example .. 19
3.6.4 Car Wash Example .. 19

iv Technical Standard (2010)

4 Service, ServiceContract, and ServiceInterface .. 20

4.1 Introduction ... 20
4.2 The Service Class.. 21
4.3 The performs and performedBy Properties ... 22

4.3.1 Service Consumers and Service Providers 22
4.4 Service – Examples ... 23

4.4.1 The uses and usedBy Properties Applied to Service 23
4.4.2 The represents and representedBy Properties Applied

to Service ... 23
4.4.3 Exemplifying the Difference between Doing a Task

and Performing a Service .. 24
4.4.4 Car Wash Example .. 24

4.5 The ServiceContract Class .. 25
4.5.1 The interactionAspect and legalAspect Datatype

Properties ... 25
4.6 The hasContract and isContractFor Properties 27
4.7 The involvesParty and isPartyTo Properties 27
4.8 The Effect Class .. 28
4.9 The specifies and isSpecifiedBy Properties .. 29
4.10 ServiceContract – Examples ... 30

4.10.1 Service-Level Agreements .. 30
4.10.2 Service Sourcing.. 31
4.10.3 Car Wash Example .. 31

4.11 The ServiceInterface Class ... 31
4.11.1 The Constraints Datatype Property 32

4.12 The hasInterface and isInterfaceOf Properties 33
4.13 The InformationType Class .. 34
4.14 The hasInput and isInputAt Properties ... 35
4.15 The hasOutput and isOutputAt Properties .. 35
4.16 Examples ... 36

4.16.1 Interaction Sequencing .. 36
4.16.2 Car Wash Example .. 36

5 Composition and its Subclasses .. 37

5.1 Introduction ... 37
5.2 The Composition Class ... 37

5.2.1 The compositionPattern Datatype Property 38
5.3 The orchestrates and orchestratedBy Properties 40
5.4 The ServiceComposition Class ... 42
5.5 The Process Class ... 42
5.6 Service Composition and Process Examples 44

5.6.1 Simple Service Composition Example 44
5.6.2 Process Example.. 44
5.6.3 Process and Service Composition Example 44
5.6.4 Car Wash Example .. 44

6 Policy .. 45

6.1 Introduction ... 45

Service-Oriented Architecture Ontology v

6.2 The Policy Class ... 45
6.3 The appliesTo and isSubjectTo Properties ... 47
6.4 The setsPolicy and isSetBy Properties .. 47
6.5 Examples ... 48

6.5.1 Car Wash Example .. 48

7 Event ... 49

7.1 Introduction ... 49
7.2 The Event Class .. 49
7.3 The generates and generatedBy Properties ... 50
7.4 The respondsTo and respondedToBy Properties 50

8 Complete Car Wash Example ... 52

8.1 The Organizational Aspect ... 52
8.2 The Washing Services .. 53

8.2.1 Interfaces to the Washing Services...................................... 55
8.3 The Washing Processes .. 55
8.4 The Washing Policies ... 56

9 Internet Purchase Example .. 58

A The OWL Definition of the Ontology ... 60

B Relationship to Other SOA Standards... 72

C Class Relationship Matrix ... 75

vi Technical Standard (2010)

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of

Boundaryless Information Flow™ will enable access to integrated information within and

between enterprises based on open standards and global interoperability. The Open Group works

with customers, suppliers, consortia, and other standards bodies. Its role is to capture,

understand, and address current and emerging requirements, establish policies, and share best

practices; to facilitate interoperability, develop consensus, and evolve and integrate

specifications and Open Source technologies; to offer a comprehensive set of services to

enhance the operational efficiency of consortia; and to operate the industry's premier

certification service, including UNIX
®
 certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 15 years' experience in developing and operating certification

programs and has extensive experience developing and facilitating industry adoption of test

suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/certification.

The Open Group publishes a wide range of technical documentation, the main part of which is

focused on development of Technical and Product Standards and Guides, but which also

includes white papers, technical studies, branding and testing documentation, and business titles.

Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with

new developments and associated international standards. To distinguish between revised

specifications which are fully backwards-compatible and those which are not:

 A new Version indicates there is no change to the definitive information contained in the

previous publication of that title, but additions/extensions are included. As such, it

replaces the previous publication.

 A new Issue indicates there is substantive change to the definitive information contained

in the previous publication of that title, and there may also be additions/extensions. As

such, both previous and new documents are maintained as current publications.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.

This information is published at www.opengroup.org/corrigenda.

This Document

This document is the Technical Standard for Service-Oriented Architecture Ontology. It has

been developed and approved by The Open Group.

http://www.opengroup.org/
http://www.opengroup.org/certification
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

Service-Oriented Architecture Ontology vii

Trademarks

Boundaryless Information Flow
™

 and TOGAF
™

 are trademarks and Making Standards Work
®
,

The Open Group
®
, UNIX

®
, and the “X” device are registered trademarks of The Open Group in

the United States and other countries.

The Open Group acknowledges that there may be other brand, company, and product names

used in this document that may be covered by trademark protection and advises the reader to

verify them independently.

viii Technical Standard (2010)

Acknowledgements

The Open Group gratefully acknowledges all contributors to the SOA Ontology project, and in

particular the following individuals:

 Edward Altman, Eli Lilly

 Jim Amsden, IBM

 Horia Balog, Telus

 Stuart Boardman, Getronics

 Brian R. Bokor, IBM

 Rex Brooks, Starbourne

 Abby H. Brown, Intel

 Anthony L. Carrato, IBM

 John Colgrave, IBM

 Eric Dabbaghchi, MITRE

 Mark Delaney, Penn State University

 Michele Deo, HP

 Awel Dico, Bank of Montreal

 Chris Greenslade, CLARS

 Ed Harrington, Architecting-the-Enterprise

 Claus T. Jensen, IBM

 Srikanth Kappagantula, HP

 Radha Kasibhatla, HP

 Heather Kreger, IBM

 Milena Litoiu, CGI

 Ovace Mamnoon, HP

 E.G. Nadhan, HP

 Miroslav Novak, HP

 Mike Pasco, IBM

Service-Oriented Architecture Ontology ix

 Rajiv Ranjan, HP

 Kay Sampaongern, The Boeing Company

 Todd J. Schneider, Raytheon

 Jerome Sonnenberg, Harris Corporation

 Andras Szakal, IBM

 Ahmad R. Yaghoobi, The Boeing Company

 Liang-Jie Zhang, IBM

While many of the above made strong contributions, special thanks are due to Claus T. Jensen,

who was responsible for the technical direction and much of the wording of the published

standard.

x Technical Standard (2010)

Referenced Documents

The following documents are referenced in this Technical Standard:

 Business Process Modeling Notation (BPMN), Version 1.1, Object Management Group;

available from www.omg.org.

 Beyond Concepts: Ontology as Reality Representation, Barry Smith; available from

http://ontology.buffalo.edu/bfo/BeyondConcepts.pdf.

 Definition of SOA: The Open Group; available from

www.opengroup.org/soa/soa/def.htm#_Definition_of_SOA.

 IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of

Software-intensive Systems (adopted by ISO/IEC JTC1/SC7 as ISO/IEC 42010:2007);

available from standards.ieee.org.

 IETF RFC 2119: Key Words for use in RFCs to Indicate Requirement Levels, March

1997; refer to www.ietf.org.

 ISO/IEC 42010:2007: Systems and Software Engineering – Recommended Practice for

Architectural Description of Software-intensive Systems; available from www.iso.org.

 Navigating the SOA Open Standards Landscape Around Architecture (W096), White

Paper published by The Open Group, November 2009.

 OASIS Reference Model for Service-Oriented Architecture, Version 1.0, Organization for

the Advancement of Structured Information Standards (OASIS); available from

www.oasis-open.org.

 OWL Web Ontology Language Reference, W3C Recommendation, 10 February 2004,

World-Wide Web Consortium; available from www.w3.org/TR/owl-ref.

 Service-Oriented Architecture Modeling Language (SoaML), Object Management Group;

available from www.omg.org.

 The Open Group Architecture Framework (TOGAF), The Open Group; available from

www.opengroup.org.

 What is an Ontology? Stanford University; available from

www-ksl.stanford.edu/kst/what-is-an-ontology.html.

http://www.omg.org/
http://ontology.buffalo.edu/bfo/BeyondConcepts.pdf
http://www.opengroup.org/soa/soa/def.htm#_Definition_of_SOA
http://standards.ieee.org/
http://www.ietf.org/
http://www.iso.org/
http://www.oasis-open.org/
http://www.w3.org/TR/owl-ref/
http://www.omg.org/
http://www.opengroup.org/
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

Service-Oriented Architecture Ontology 1

1 Introduction

1.1 Objective

The purpose of this Technical Standard is to contribute to The Open Group mission of

Boundaryless Information Flow, by developing and fostering common understanding of Service-

Oriented Architecture (SOA) in order to improve alignment between the business and

information technology communities, and facilitate SOA adoption.

It does this in two specific ways:

1. It defines the concepts, terminology, and semantics of SOA in both business and technical

terms, in order to:

a. Create a foundation for further work in domain-specific areas

b. Enable communications between business and technical people

c. Enhance the understanding of SOA concepts in the business and technical

communities

d. Provide a means to state problems and opportunities clearly and unambiguously to

promote mutual understanding

2. It potentially contributes to model-driven SOA implementation.

The ontology is designed for use by:

 Business people, to give them a deeper understanding of SOA concepts and how they are

used in the enterprise and its environment

 Architects, as metadata for architectural artifacts

 Architecture methodologists, as a component of SOA meta-models

 System and software designers for guidance in terminology and structure

1.2 Overview

This Technical Standard defines a formal ontology for Service-Oriented Architecture (SOA).

SOA is an architectural style that supports service-orientation. This is the official definition of

SOA as defined by The Open Group SOA Work Group. For full details, see

www.opengroup.org/soa/soa/def.htm#_Definition_of_SOA.

http://www.opengroup.org/soa/soa/def.htm%23_Definition_of_SOA

2 Technical Standard (2010)

The ontology is represented in the Web Ontology Language (OWL) defined by the World-Wide

Web Consortium (W3C). OWL has three increasingly expressive sub-languages: OWL-Lite,

OWL-DL, and OWL-Full. (See www.w3.org/2004/OWL for a definition of these three dialects

of OWL.) This ontology uses OWL-DL, the sub-language that provides the greatest

expressiveness possible while retaining computational completeness and decidability.

The ontology contains classes and properties corresponding to the core concepts of SOA. The

formal OWL definitions are supplemented by natural language descriptions of the concepts, with

graphic illustrations of the relations between them, and with examples of their use. For purposes

of exposition, the ontology also includes UML diagrams that graphically illustrate its classes and

properties of the ontology. The natural language and OWL definitions contained in this

specification constitute the authoritative definition of the ontology; the diagrams are for

explanatory purposes only. Some of the natural language terms used to describe the concepts are

not formally represented in the ontology; those terms are meant in their natural language sense.

This Technical Standard uses examples to illustrate the ontology. One of these, the car-wash

example, is used consistently throughout to illustrate the main concepts. (See Chapter 8 for the

complete example.) Other examples are used ad hoc in individual sections to illustrate particular

points.

A graphically compressed visualization of the entire ontology is shown below (in Figure 1).

Figure 1: SOA Ontology – Graphical Overview

The concepts illustrated in this figure (Figure 1) are described in the body of this Technical

Standard.

http://www.w3.org/2004/OWL/

Service-Oriented Architecture Ontology 3

The class hierarchy is as follows (see Figure 2).

Figure 2: SOA Ontology - Class Hierarchy

The remainder of the Technical Standard is structured as follows:

 This chapter provides an introduction to the whole standard.

 Chapters 2 through 7 provide the formal definitions (OWL and natural language) of the

terms and concepts included in the ontology.

 Chapter 8 contains the complete car wash example that is used as a common example

throughout.

 Chapter 9 contains an additional elaborate example utilizing most of the classes in the

ontology.

 Appendix A contains the formal OWL definitions of the ontology, collected together.

 Appendix B describes the relation of this ontology to other work.

 Appendix C contains a relationship matrix that details the class relationships implied by

the OWL definitions of the ontology.

1.3 Applications

The SOA ontology specification was developed in order to aid understanding, and potentially be

a basis for model-driven implementation.

4 Technical Standard (2010)

To aid understanding, this specification can simply be read. To be a basis for model-driven

implementation, it should be applied to particular usage domains and application to example

usage domains will aid understanding.

The ontology is applied to a particular usage domain by adding SOA OWL class instances of

things in that domain. This is sometimes referred to as “populating the ontology”. In addition, an

application can add definitions of new classes and properties, can import other ontologies, and

can import the ontology OWL representation into other ontologies.

The ontology defines the relations between terms, but does not prescribe exactly how they

should be applied. (Explanations of what ontologies are and why they are needed can be found

in, for example, Beyond Concepts: Ontology as Reality Representation and What is an

Ontology?) The examples provided in this Technical Standard are describing one way in which

the ontology could be applied in practical situations. Different applications of the ontology to the

same situations would nevertheless be possible. The precise instantiation of the ontology in

particular practical situations is a matter for users of the ontology; as long as the concepts and

constraints defined by the ontology are correctly applied, the instantiation is valid.

1.4 Conformance

There are two kinds of applications that can potentially conform to this ontology. One is other

OWL-based ontologies (typically extensions of the SOA ontology); the other is a non-OWL

application such as a meta-model or a piece of software.

A conforming OWL application (derived OWL-based ontology):

 Must conform to the OWL standard

 Must include (in the OWL sense) the whole of the ontology contained in Appendix A of

this Technical Standard

 Can add other OWL constructs, including class and property definitions

 Can import other ontologies in addition to the SOA ontology

A conforming non-OWL application:

 Must include a defined and consistent transform to a non-trivial subset of the ontology

contained in Appendix A of this Technical Standard

 Can add other constructs, including class and property definitions

 Can leverage other ontologies in addition to the SOA ontology

1.5 Terminology

The words and phrases MUST, REQUIRED, SHALL, MUST NOT, SHALL, NOT, SHOULD,

RECOMMENDED, SHOULD NOT, NOT RECOMMENDED, and MAY are used in this

Technical Standard with the meanings defined in IETF RFC 2119.

Service-Oriented Architecture Ontology 5

Furthermore, the meaning of the word opaque (used in the later definition of the concept

Element) is defined to indicate that any possible internal structure of something is invisible to an

external observer.

1.6 Typographical Conventions

Bold font is used for OWL class, property, and instance names where they appear in section

text.

Italic strings are used for emphasis and to identify the first instance of a word requiring

definition.

OWL definitions and syntax are shown in fixed-width font.

An unlabeled arrow in the illustrative UML diagrams means subclass.

1.7 Future Directions

It is anticipated that this will be a living document that will be updated as the industry evolves

and SOA concepts are refined. Future versions of this ontology may include additional core

concepts.

Also, this ontology can be used as a core for domain-specific ontologies that apply to the use of

SOA in particular sectors of commerce and industry. The Open Group does not currently plan to

develop such ontologies, but encourages other organizations to do so to meet their needs.

6 Technical Standard (2010)

2 System and Element

2.1 Introduction

System and element are two of the core concepts of this ontology. Both are concepts that are

often used by practitioners, including the notion that systems have elements and that systems can

be hierarchically combined (systems of systems). What differs from domain to domain is the

specific nature of systems and elements; for instance, an electrical system has very different

kinds of elements than an SOA system.

In the ontology only elements and systems within the SOA domain are considered. Some SOA

sub-domains use the term component rather than the term element. This is not contradictory, as

any component of an SOA system is also an element of that (composite) system.

This chapter describes the following classes of the ontology:

 Element

 System

In addition, it defines the following properties:

 uses and usedBy

 represents and representedBy

2.2 The Element Class

<owl:Class rdf:about="#Element">

</owl:Class>

An element is an opaque entity that is indivisible at a given level of abstraction. The element has

a clearly defined boundary. The concept of element is captured by the Element OWL class,

which is illustrated below (in Figure 3).

Service-Oriented Architecture Ontology 7

Figure 3: The Element Class

In the context of the SOA ontology we consider in detail only functional elements that belong to

the SOA domain. There are other kinds of elements than members of the four named subclasses

(System, HumanActor, Task, and Service) described later in this ontology. Examples of such

other kinds of elements are things like software components or technology components (such as

Enterprise Service Bus (ESB) implementations, etc.).

2.3 The uses and usedBy Properties

<owl:ObjectProperty rdf:about="#uses">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Element"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="usedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="uses"/>

 </owl:inverseOf>

</owl:ObjectProperty>

Elements may use other elements in various ways. In general, the notion of some element using

another element is applied by practitioners for all of models, executables, and physical objects.

What differs from domain to domain is the way in which such use is perceived.

An element uses another element if it interacts with it in some fashion. Interacts here is

interpreted very broadly ranging through, for example, an element simply being a member of

(used by) some system (see later for a formal definition of the System class), an element

interacting with (using) another element (such as a service; see later for a formal definition of

the Service class) in an ad hoc fashion, or even a strongly coupled dependency in a composition

(see Section 5.2 for a formal definition of the Composition class). The uses property, and its

inverse usedBy, capture the abstract notion of an element using another. These properties

capture not just transient relations. Instantiations of the property can include “uses at this

instant”, “has used”, and “may in future use”.

8 Technical Standard (2010)

For the purposes of this ontology we have chosen not to attempt to enumerate and formally

define the multitude of different possible semantics of a uses relationship. We leave the semantic

interpretations to a particular sub-domain, application, or even design approach.

2.4 Element – Organizational Example

Using an organizational example, typical instances of Element are organizational units and

people. Whether to perceive a given part of an organization as an organizational unit or as the set

of people within that organizational unit is an important choice of abstraction level:

 Inside the boundary of the organizational unit we want to express the fact that an

organizational unit uses the people that are members of it. Note that the same person can

in fact be a member of (be used by) multiple organizational units.

 Outside the boundary the internal structure of an organizational unit must remain opaque

to an external observer, as the enterprise wants to be able to change the people within the

organizational unit without having to change the definition of the organizational unit

itself.

This simple example expresses that some elements have an internal structure. In fact, from an

internal perspective they are an organized collection of other simpler things (captured by the

System class defined below).

2.5 The System Class

<owl:Class rdf:ID="System">

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Element"/>

 </rdfs:subClassOf>

</owl:Class>

A system is an organized collection of other things. Specifically things in a system collection are

instances of Element, each such instance being used by the system. The concept of system is

captured by the System OWL class, which is illustrated below (in Figure 4).

Figure 4: The System Class

Service-Oriented Architecture Ontology 9

This definition of System is heavily influenced by IEEE Std 1471-2000, adopted by ISO/IEC

JTC1/SC7 as ISO/IEC 42010:2007: Systems and Software Engineering – Recommended

Practice for Architectural Description of Software-intensive Systems.

In the context of the SOA ontology we consider in detail only functional systems that belong to

the SOA domain. Note that a fully described instance of System should have by its nature (as a

collection) a uses relationship to at least one instance of Element.

Since System is a subclass of Element, all systems have a boundary and are opaque to an

external observer (black box view). This excludes from the System class structures that have no

defined boundary. From an SOA perspective this is not really a loss since all interesting SOA

systems do have the characteristic of being possible to perceive from an outside (consumer)

perspective. Furthermore, having System as a subclass of Element allows us to naturally

express the notion of systems of systems – the lower-level systems are simply elements used by

the higher-level system.

At the same time as supporting an external viewpoint (black box view, see above) all systems

must also support an internal viewpoint (white box view) expressing how they are an organized

collection. As an example, for the notion of a service this would typically correspond to a

service specification view versus a service realization view (similar to the way that SoaML

defines services as having both a black box/specification part and a white box/realization part).

It is important to realize that even though systems using elements express an important aspect of

the uses property, it is not necessary to “invent” a system just to express that some element uses

another. In fact, even for systems we may need to be able to express that they can use elements

outside their own boundary – though this in many cases will preferably be expressed not at the

system level, but rather by an element of the system using that external Element instance.

System is defined as disjoint with the Service and Task classes. Instances of these classes are

considered not to be collections of other things. System is specifically not defined as disjoint

with the HumanActor class since an organization in many cases is in fact just a particular kind

of system. We choose not to define a special intersection class to represent this fact.

2.6 System – Examples

2.6.1 Organizational Example

Continuing the organizational example from above, we can now express that an organizational

unit as an instance of System has the people in it as members (and instances of Element).

2.6.2 Service Composition Example

Using a service composition example, services A and B are instances of Element and the

composition of A and B is an instance of System (that uses A and B). It is important to realize

that the act of composing is different than composition as a thing – it is in the latter sense that we

are using the term composition here.

10 Technical Standard (2010)

See also below for a formal definition of the concepts of service and service composition (and a

repeat of the example in that more precise context).

2.6.3 Car Wash Example

Consider a car wash business. The company as a whole is an organizational unit and can be

instantiated in the ontology in the following way:

 CarWashBusiness is an instance of System.

 Joe (the owner) is an instance of Element and used by (owner of) CarWashBusiness.

 Mary (the secretary) is an instance of Element and used by (employee of)

CarWashBusiness.

 John (the pre-wash guy) is an instance of Element and used by (employee of)

CarWashBusiness.

 Jack (the washing manager and operator) is an instance of Element and used by

(employee of) CarWashBusiness.

2.7 The represents and representedBy Properties

<owl:ObjectProperty rdf:about="#represents">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Element"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="representedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="represents"/>

 </owl:inverseOf>

</owl:ObjectProperty>

The environment described by an SOA is intrinsically hierarchically composite (see also Section

5.2 for a definition of the Composition class); in other words, the elements of SOA systems can

be repeatedly composed to ever higher levels of abstraction. One aspect of this has already been

addressed by the uses and usedBy properties in that we can use these to express the notion of

systems of systems. This is still a very concrete relationship though, and does not express the

concept of architectural abstraction. We find the need for architectural abstraction in various

places such as a role representing the people playing that role, an organizational unit

representing the people within it (subtly different from that same organizational unit using the

people within it, as the represents relationship indicates the organizational unit as a substitute

interaction point), an architectural building block representing an underlying construct (for

instance, important to enterprise architects wanting to explicitly distinguish between constructs

and building blocks), and an Enterprise Service Bus (ESB) representing the services that are

accessible through it (for instance, relevant when explicitly modeling operational interaction and

dependencies). The concept of such an explicitly changing viewpoint, or level of abstraction, is

captured by the represents and representedBy properties illustrated below (in Figure 5).

Service-Oriented Architecture Ontology 11

Figure 5: The represents and representedBy Properties

It is important to understand the exact nature of the distinction between using an element (E1)

and using another element (E2) that represents E1. If E1 changes, then anyone using E1 directly

would experience a change, but someone using E2 would not experience any change.

When applying the architectural abstraction via the represents property there are three different

architectural choices that can be made:

 An element represents another element in a very literal way, simply by hiding the

existence of that element and any changes to it. There will be a one-to-one relationship

between the instance of Element and the (different) instance of Element that it

represents. A simple real-world example is the notion of a broker acting as an

intermediary between a seller (that does not wish to be known) and a buyer.

 An element represents a particular aspect of another element. There will be a many-to-one

relationship between many instances of Element (each of which represents a different

aspect), and one (different) instance of Element. A simple real-world example is the

notion that the same person can play (be represented by) many different roles.

 An element is an abstraction that can represent many other elements. There will be a one-

to-many relationship between one instance of Element (as an abstraction) and many other

instances of Element. A simple real-world example is the notion of an architectural

blueprint representing an abstraction of many different buildings being built according to

that blueprint.

Note that in most cases an instance of Element will represent only one kind of thing.

Specifically, an instance of Element will typically represent instances of at most one of the

classes System, Service, HumanActor, and Task (with the exception of the case where the

same thing is both an instance of System and an instance of Actor). See later sections for the

definitions of Service, HumanActor, and Task.

12 Technical Standard (2010)

2.8 Examples

2.8.1 Organizational Example

Expanding further on the organizational example, assume that a company wants to form a new

organizational unit O1. There are two ways of doing this:

 Define the new organization directly as a collection of people P1, P2, P3, and P4. This

means that the new organization is perceived to be a leaf in the organizational hierarchy,

and that any exchange of personnel means that its definition needs to change.

 Define the new organization as a higher-level organizational construct, joining together

two existing organizations O3 and O4. Coincidentally, O3 and O4 between them may

have the same four people P1, P2, P3, and P4, but the new organization really doesn‟t

know, and any member of O3 or O4 can be changed without needing to change the

definition of the new organization. Furthermore, any member of O3 is intrinsically not

working in the same organization as the members of O4 (in fact need not even be aware of

them) – contrary to the first option where P1, P2, P3, and P4 are all colleagues in the same

new organization.

In this way the abstraction aspect of the represents property induces an important difference in

the semantics of the collection defining the new organization. Any instantiation of the ontology

can and should use the represents and representedBy properties to crisply define the implied

semantics and lines of visibility/change.

2.8.2 Car Wash Example

Joe chooses to organize his business into two organizational units, one for the administration and

one for the actual washing of cars. This can be instantiated in the ontology in the following way:

 CarWashBusiness is an instance of System.

 AdministrativeSystem is an instance of System.

 Administration is an instance of Element that represents AdministrativeSystem (the

opaque organizational unit aspect, aka ignoring anything else about

AdministrativeSystem).

 CarwashBusiness uses (has organizational unit) Administration.

 CarWashSystem is an instance of System.

 CarWash is an instance of Element that represents CarWashSystem (the opaque

organizational unit aspect, aka ignoring anything else about CarWashSystem).

 CarWash is a member of CarWashBusiness.

 Joe (the owner) is an instance of Element and now used by AdministrationSystem.

 Mary (the secretary) is an instance of Element and now used by AdministrationSystem.

Service-Oriented Architecture Ontology 13

 John (the pre-wash guy) is an instance of Element and now used by CarWashSystem.

 Jack (the wash manager and operator) is an instance of Element and now used by

CarWashSystem.

14 Technical Standard (2010)

3 HumanActor and Task

3.1 Introduction

People, organizations, and the things they do are important aspects of SOA systems.

HumanActor and Task capture this as another set of core concepts of the ontology. Both are

concepts that are generic and have relevance outside the domain of SOA. For the purposes of

this SOA ontology we have chosen to give them specific scope in that tasks are intrinsically

atomic (corresponding to, for instance, the Business Process Modeling Notation (BPMN) 2.0

definition of task) and human actors are restricted to people and organizations.

This chapter describes the following classes of the ontology:

 HumanActor

 Task

In addition, it defines the following properties:

 does and doneBy

3.2 The HumanActor Class

<owl:Class rdf:about="#HumanActor">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Element"/>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

 </owl:disjointWith>

</owl:Class>

A human actor is a person or an organization. The concept of human actor is captured by the

HumanActor OWL class, which is illustrated below (in Figure 6).

Service-Oriented Architecture Ontology 15

Figure 6: The HumanActor Class

HumanActor is defined as disjoint with the Service and Task classes. Instances of these classes

are considered not to be people or organizations. HumanActor is specifically not defined as

disjoint with System since an organization in many cases is in fact just a particular kind of

system. We choose not to define a special intersection class to represent this fact.

3.3 HumanActor – Examples

3.3.1 The uses and usedBy Properties Applied to HumanActor

In one direction, a human actor can itself use things such as services, systems, and other human

actors. In the other direction, a human actor can, for instance, be used by another actor or by a

system (as an element within that system such as a human actor in a process).

3.3.2 The represents and representedBy Properties Applied to HumanActor

As mentioned in the introduction to this section, human actors are intrinsically part of systems

that instantiate SOAs. Yet in many cases as an element of an SOA system we talk about not the

specific person or organization, rather an abstract representation of them that participates in

processes, provides services, etc. In other words, we talk about elements representing human

actors.

As examples, a broker (instance of HumanActor) may represent a seller (instance of

HumanActor) that wishes to remain anonymous, a role (instance of Element) may represent

(the role aspect of) multiple instances of HumanActor, and an organizational unit (instance of

HumanActor) may represent the many people (all instances of HumanActor) that are part of it.

16 Technical Standard (2010)

Note that we have chosen not to define a “role class”, as we believe that using Element with the

represents property is a more general approach which does not limit the ability to also define

role-based systems. For all practical purposes there is simply a “role subclass” of Element, a

subclass that we have chosen not to define explicitly.

3.3.3 Organizational Example

Continuing the organizational example from above, we can now express that P1 (John), P2

(Jack), P3 (Joe), and P4 (Mary) as instances of Element are in fact (people) instances of

HumanActor. We can also express (if we so choose) that all of O1 (CarWashBusiness), O3

(CarWash), and O4 (Administration) are (organization) human actors from an action

perspective at the same time that they are systems from a collection/composition perspective.

3.3.4 Car Wash Example

See Section 8.1 for the complete organizational aspect of the car wash example.

3.4 The Task Class

<owl:Class rdf:about="#Task">

 <owl:disjointWith>

 <owl:Class rdf:ID="System"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Element"/>

 </rdfs:subClassOf>

</owl:Class>

A task is an atomic action which accomplishes a defined result. Tasks are done by people or

organizations, specifically by instances of HumanActor.

The Business Process Modeling Notation (BPMN) 2.0 defines task as follows: “A task is an

atomic Activity within a Process flow. A task is used when the work in the process cannot be

broken down to a finer level of detail. Generally, an end-user and/or applications are used to

perform the task when it is executed.” For the purposes of the ontology we have added precision

by formally separating the notion of doing from the notion of performing. Tasks are (optionally)

done by human actors, furthermore (as instances of Element) tasks can use services that are

performed by technology components (see details in Section 4.3; see also the example in

Chapter 9).

Service-Oriented Architecture Ontology 17

The concept of task is captured by the Task OWL class, which is illustrated below (in Figure 7).

Figure 7: The Task Class

Task is defined as disjoint with the System, Service, and HumanActor classes. Instances of

these classes are considered not to be atomic actions.

3.5 The does and doneBy Properties

<owl:ObjectProperty rdf:about="#doneBy">

 <rdfs:domain rdf:resource="#Task"/>

 <rdfs:range rdf:resource="#HumanActor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="does">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#doneBy"/>

 </owl:inverseOf>

</owl:ObjectProperty>

<owl:Class rdf:ID="Task">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="doneBy"/>

18 Technical Standard (2010)

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#doneBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Tasks are naturally thought of as being done by people or organizations. If we think of tasks as

being the actual things done, then the natural cardinality is that each instance of Task is done by

at most one instance of HumanActor. Due to the atomic nature of instances of Task we rule out

the case where such an instance is done jointly by multiple instances of HumanActor. The

cardinality can be zero if someone chooses not to instantiate all possible human actors. On the

other hand, the same instance of HumanActor can (over time) easily do more than one instance

of Task. The does property, and its inverse doneBy, capture the relation between a human actor

and the tasks it performs.

3.6 Task – Examples

3.6.1 The uses and usedBy Properties Applied to Task

In one direction, the most common case of a task using another element is where an automated

task (in an orchestrated process; see Chapter 5 for the definition of process and orchestration)

uses a service as its realization. In the other direction, a task can, for instance, be used by a

system (as an element within that system, such as a task in a process).

3.6.2 The represents and representedBy Properties Applied to Task

As mentioned in the introduction to this section, tasks are intrinsically part of SOA systems. Yet

in many cases as an element of an SOA system we talk about not the actual thing being done,

rather an abstract representation of it that is used as an element in systems, processes, etc. In

other words, we talk about elements representing tasks.

As a simple example, an abstract activity in a process model (associated with a role) may

represent a concrete task (done by a person fulfilling that role). Note that due to the atomic

nature of a task it does not make sense to talk about many elements representing different

aspects of it.

Service-Oriented Architecture Ontology 19

3.6.3 Organizational Example

Continuing the organizational example from above, we can now express which tasks that are

done by human actors (people) P1, P2, P3, and P4, and how those tasks can be elements in

bigger systems that describe things such as organizational processes. Chapter 5 will deal

formally with the concept of composition, including properly defining the concept of a process

as one particular kind of composition.

3.6.4 Car Wash Example

As an important part of the car wash system, John and Jack perform certain manual tasks

required for washing a car properly:

 Jack and John are instances of HumanActor.

 WashWindows is an instance of Task and is done by John.

 PushWashButton is an instance of Task and is done by Jack.

20 Technical Standard (2010)

4 Service, ServiceContract, and ServiceInterface

4.1 Introduction

Service is another core concept of this ontology. It is a concept that is fundamental to SOA and

always used in practice when describing or engineering SOA systems, yet it is not easy to define

formally. The ontology is based on the following definition of service:

“A service is a logical representation of a repeatable activity that has a specified outcome. It is

self-contained and is a „black box‟ to its consumers.”

This corresponds to the existing official Open Group definition of the term; refer to the Open

Group Definition of SOA.

The word “activity” in the definition above is here used in the general English language sense of

the word, not in the process-specific sense of that same word (i.e., activities are not necessarily

process activities). The ontology purposefully omits “business” as an intrinsic part of the

definition of service. The reason for this is that the notion of business is relative to a person‟s

viewpoint – as an example, one person‟s notion of IT is another person‟s notion of business (the

business of IT). Service as defined by the ontology is agnostic to whether the concept is applied

to the classical notion of a business domain or the classical notion of an IT domain.

Other current SOA-specific definitions of the term service include:

 “A mechanism to enable access to one or more capabilities, where the access is provided

using a prescribed interface and is exercised consistent with constraints and policies as

specified by the service description.” (Source: OASIS SOA Reference Model)

 “A capability offered by one entity or entities to others using well-defined „terms and

conditions‟ and interfaces.” (Source: OMG SoaML Specification)

Within the normal degree of precision of the English language, these definitions are not

contradictory; they are stressing different aspects of the same concept. All three definitions are

SOA-specific though, and represent a particular interpretation of the generic English language

term service.

This chapter describes the following classes of the ontology:

 Service

 ServiceContract

 ServiceInterface

 InformationType

Service-Oriented Architecture Ontology 21

In addition, it defines the following properties:

 performs and performedBy

 hasContract and isContractFor

 involvesParty and isPartyTo

 specifies and isSpecifiedBy

 hasInterface and isInterfaceOf

 hasInput and isInputAt

 hasOutput and isOutputAt

4.2 The Service Class

<owl:Class rdf:about="#Service">

 <owl:disjointWith>

 <owl:Class rdf:ID="System"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Element"/>

 </rdfs:subClassOf>

</owl:Class>

A service is a logical representation of a repeatable activity that has a specified outcome. It is

self-contained and is a „black box‟ to its consumers. The concept of service is captured by the

Service OWL class, which is illustrated below (in Figure 8).

Figure 8: The Service Class

22 Technical Standard (2010)

In the context of the SOA ontology we consider only SOA-based services. Other domains, such

as Integrated Service Management, can have services that are not SOA-based and hence are

outside the intended scope of the SOA ontology.

Service is defined as disjoint with the System, Task, and HumanActor classes. Instances of

these classes are considered not to be services themselves, even though they may provide

capabilities that can be offered as services.

4.3 The performs and performedBy Properties

<owl:ObjectProperty rdf:ID="performs">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Service"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="performedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="performs"/>

 </owl:inverseOf>

</owl:ObjectProperty>

As a service itself is only a logical representation, any service is performed by something. The

something that performs a service must be opaque to anyone interacting with it, an opaqueness

which is the exact nature of the Element class. This concept is captured by the performs and

performedBy properties as illustrated in The Service Class (Figure 8). This also captures the

fact that services can be performed by elements of other types than systems. This includes

elements such as software components, human actors, and tasks.

Note that the same instance of Service can be performed by many different instances of

Element. As long as the service performed is the same, an external observer cannot tell the

difference (for contractual obligations, SLAs, etc. see the definition of the ServiceContract

class in Section 4.5.). Conversely, any instance of Element may perform more than one service

or none at all.

While a service can be performed by other elements, the service itself (as a purely logical

representation) does not perform other services. See the Simple Service Composition Example

(Section 5.6.1) for an example of how to represent service compositions formally in the

ontology.

4.3.1 Service Consumers and Service Providers

Terminology used in an SOA environment often includes the notion of service providers and

service consumers. There are two challenges with this terminology:

 It does not distinguish between the contractual obligation aspect of consume/provide and

the interaction aspect of consume/provide. A contractual obligation does not necessarily

translate to an interaction dependency, if for no other reason than because the realization

of the contractual obligation may have been sourced to a third party.

Service-Oriented Architecture Ontology 23

 Consuming or providing a service is a statement that only makes sense in context – either

a contractual context or an interaction context. These terms are consequently not well

suited for making statements about elements and services in isolation.

The above are the reasons why the ontology has chosen not to adopt consume and provide as

core concepts, rather instead allows consume or provide terms used with contractual obligations

and/or interaction rules described by service contracts; see the definition of the ServiceContract

class in Section 4.5. In its simplest form, outside the context of a formal service contract, the

interaction aspect of consuming and providing services may even be expressed simply by saying

that some element uses (consumes) a service or that some element performs (provides) a service;

see also the examples below.

4.4 Service – Examples

4.4.1 The uses and usedBy Properties Applied to Service

In one direction, it does not really make sense to talk about a service that uses another element.

While the thing that performs the service might very well include the use of other elements (and

certainly will in the case of service composition), the service itself (as a purely logical

representation) does not use other elements.

In the other direction, we find the most common of all interactions in an SOA environment: the

notion that some element uses a service by interacting with it. Note that from an operational

perspective this interaction actually reaches somewhat beyond the service itself by involving the

following typical steps:

 Picking the service to interact with (this statement is agnostic as to whether this is done

dynamically at runtime or statically at design and/or construct time)

 Picking an element that performs that service (in a typical SOA environment, this is most

often done “inside” an Enterprise Service Bus (ESB))

 Interacting with the chosen element (that performs the chosen) service (often also

facilitated by an ESB)

4.4.2 The represents and representedBy Properties Applied to Service

Concepts such as service mediations, service proxies, ESBs, etc. are natural to those

practitioners that describe and implement the operational aspects of SOA systems. From an

ontology perspective all of these can be captured by some other element representing the service

– a level of indirection that is critical when we do not want to bind operationally to a particular

service endpoint, rather we want to preserve loose-coupling and the ability to switch

embodiments as needed. Note that by leveraging the represents and representedBy properties

in this fashion we additionally encapsulate the relatively complex operational interaction pattern

that was described in the section above (picking the service, picking an element that performs

the service, and interacting with that chosen element).

24 Technical Standard (2010)

While a service being represented by something else is quite natural, it is harder to imagine what

the service itself might represent. To some degree we have already captured the fact that a

service represents any embodiment of it, only we have chosen to use the performs and

performedBy properties to describe this rather than the generic represents and representedBy

properties. As a consequence, we do not expect practical applications of the ontology to have

services represent anything.

4.4.3 Exemplifying the Difference between Doing a Task and Performing a
Service

The distinction between a human actor doing a task and an element (technology, human actor, or

other) performing a service is important. The human actor doing the task has the responsibility

that it gets done, yet may in fact in many cases leverage some service to achieve that outcome:

 John is an instance of HumanActor.

 WashWindows is an instance of Task and is done by John.

 SoapWater is an instance of Service.

 WaterTap is an instance of Element.

 WaterTap performs SoapWater.

 John uses SoapWater (to do WashWindows).

Note how clearly SoapWater does not do WashWindows, nor does WaterTap do

WashWindows.

4.4.4 Car Wash Example

Joe offers two different services to his customers: a basic wash and a gold wash. This can be

instantiated in the ontology in the following way (subset to the part relevant for these two

services):

 GoldWash is an instance of Service.

 BasicWash is an instance of Service.

 CarWash performs both BasicWash and GoldWash.

 WashManager represents both BasicWash and GoldWash (i.e., is the interaction point

where customers can order services as well as pay for them).

Note the purposeful use of WashManager representing both services. This is due to Joe

deciding that in his car wash customers are not to interact with the washing machinery directly,

rather must instead interact with whomever (human actor) is fulfilling the role of wash manager.

Service-Oriented Architecture Ontology 25

4.5 The ServiceContract Class

<owl:Class rdf:about="#ServiceContract">

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

</owl:Class>

In many cases, specific agreements are needed in order to define how to use a service. This can

either be because of a desire to regulate such use or can simply be because the service will not

function properly unless interaction with it is done in a certain sequence. A service contract

defines the terms, conditions, and interaction rules that interacting participants must agree to

(directly or indirectly). A service contract is binding on all participants in the interaction,

including the service itself and the element that provides it for the particular interaction in

question. The concept of service contract is captured by the ServiceContract OWL class, which

is illustrated below (in Figure 9).

Figure 9: The ServiceContract Class

4.5.1 The interactionAspect and legalAspect Datatype Properties

<owl:DatatypeProperty rdf:about="#interactionAspect">

 <rdfs:domain rdf:resource="#ServiceContract"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#legalAspect">

 <rdfs:domain rdf:resource="#ServiceContract"/>

26 Technical Standard (2010)

</owl:DatatypeProperty>

<owl:Class rdf:about="#ServiceContract">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="legalAspect"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="legalAspect"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="interactionAspect"/>

 </owl:onProperty>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#interactionAspect"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Service contracts explicitly regulate both the interaction aspects (see the hasContract and

isContractFor properties) and the legal agreement aspects (see the involvedParty and

isPartyTo properties) of using a service. The two types of aspects are formally captured by

defining the interactionAspect and legalAspect datatype properties on the ServiceContract

class. Note that the second of these attributes, the legal agreement aspects, includes concepts

such as Service-Level Agreements (SLAs).

Service-Oriented Architecture Ontology 27

If desired, it is possible as an architectural convention to split the interaction and legal aspects

into two different service contracts. Such choices will be up to any application using this

ontology.

4.6 The hasContract and isContractFor Properties

<owl:ObjectProperty rdf:about="#isContractFor">

 <rdfs:domain rdf:resource="#ServiceContract"/>

 <rdfs:range rdf:resource="#Service"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasContract">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#isContractFor"/>

 </owl:inverseOf>

</owl:ObjectProperty>

<owl:Class rdf:about="#ServiceContract">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="isContractFor"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

The hasContract property, and its inverse isContractFor, capture the abstract notion of a

service having a service contract. Anyone wanting to use a service must obey the interaction

aspects (as defined in the interactionAspect datatype property) of any service contract applying

to that interaction. In that fashion, the interaction aspects of a service contract are context-

independent; they capture the defined or intrinsic ways in which a service may be used.

By definition, any service contract must be a contract for at least one service. It is possible that

the same service contract can be a contract for more than one service; for instance, in cases

where a group of services share the same interaction pattern or where a service contract (legally

– see the involvesParty and isPartyTo properties below) regulates the providing and consuming

of multiple services.

4.7 The involvesParty and isPartyTo Properties

<owl:ObjectProperty rdf:about="#isPartyTo">

 <rdfs:domain rdf:resource="#HumanActor"/>

 <rdfs:range rdf:resource="#ServiceContract"/>

</owl:ObjectProperty>

28 Technical Standard (2010)

<owl:ObjectProperty rdf:ID="involvesParty">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="isPartyTo"/>

 </owl:inverseOf>

</owl:ObjectProperty>

In addition to the rules and regulations that intrinsically apply to any interaction with a service

(the interaction aspect of service contracts captured in the interactionAspect datatype property)

there may be additional legal agreements that apply to certain human actors and their use of

services. The involvesParty property, and its inverse isPartyTo, capture the abstract notion of a

service contract specifying legal obligations between human actors in the context of using the

one or more services for which the service contract is a contract.

While the involvesParty and isPartyTo properties define the relationships to human actors

involved in the service contract, the actual legal obligations on each of these human actors is

defined in the legalAspect datatype property on the service contract. This includes the ability to

define who is the provider and who is the consumer from a legal obligation perspective.

There is a many-to-many relationship between service contracts and human actors. A given

human actor may be party to none, one, or many service contracts. Similarly, a given service

contract may involve none, one, or multiple human actors (none in the case where that particular

service contract only specifies the interactionAspect datatype property). Note that it is

important we allow for sourcing contracts where there is a legal agreement between human actor

A and human actor B (both of which are party to a service contract), yet human actor B has

sourced the performing of the service to human actor C (aka human actor C performs the service

in question, not human actor B).

The involvesParty property together with the legalAspect datatype property on

ServiceContract capture not just transient obligations. They include the ability to express “is

obliged to at this instant”, “was obliged to”, and “may in future be obliged to”.

4.8 The Effect Class

<owl:Class rdf:about="#Effect">

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

</owl:Class>

Interacting with something performing a service has effects. These comprise the outcome of that

interaction, and are how a service (through the element that performs it) delivers value to its

consumers. The concept of effect is captured by the Effect OWL class, which is illustrated

below (in Figure 10).

Service-Oriented Architecture Ontology 29

Figure 10: The Effect Class

Note that the Effect class purely represents how results or value is delivered to someone

interacting with a service. Any possible internal side-effects are explicitly not covered by the

Effect class.

Effect is defined as disjoint with the ServiceInterface class. (The ServiceInterface class is

defined later in this document.) Interacting with a service through its service interface can have

an outcome or provide a value (an instance of Effect), but the service interface itself does not

constitute that outcome or value.

4.9 The specifies and isSpecifiedBy Properties

<owl:ObjectProperty rdf:about="#specifies">

 <rdfs:domain rdf:resource="#ServiceContract"/>

 <rdfs:range rdf:resource="#Effect"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isSpecifiedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#specifies"/>

 </owl:inverseOf>

</owl:ObjectProperty>

<owl:Class rdf:ID="Effect">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="isSpecifiedBy"/>

 </owl:onProperty>

 </owl:Restriction>

30 Technical Standard (2010)

 </rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#ServiceContract">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="specifies"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

While a service intrinsically has an effect every time someone interacts with it, in order to trust

the effect to be something in particular, the effect needs to be specified as part of a service

contract. The specifies property, and its inverse isSpecifiedBy, capture the abstract notion of a

service contract specifying a particular effect as part of the agreement for using a service. Note

that the specified effect can apply to both the interactionAspect datatype property (simply

specifying what will happen when interacting with the service according to the service contract)

and the legalAspect datatype property (specifying a contractually promised effect).

Anyone wanting a guaranteed effect of the interaction with a given service must ensure that the

desired effect is specified in a service contract applying to that interaction. By definition, any

service contract must specify at least one effect. In the other direction, an effect must be an

effect of at least one service contract; this represents that fact that we have chosen only to

formalize those effects that are specified by service contracts (and not all intrinsic effects of all

services).

4.10 ServiceContract – Examples

4.10.1 Service-Level Agreements

A Service-Level Agreement (SLA) on a service has been agreed by organizations A and B. It is

important to realize that an SLA always has a context of the parties that have agreed to it,

involving at a minimum one legal “consumer” and one legal “provider”. This can be represented

in the ontology as follows:

 A and B are instances of HumanActor.

 Service is an instance of Service.

 ServiceContract is an instance of ServiceContract.

 ServiceContract isContractFor Service.

 ServiceContract involvesParty A.

 ServiceContract involvesParty B.

Service-Oriented Architecture Ontology 31

The legalAspect datatype property on ServiceContract describes the SLA.

4.10.2 Service Sourcing

Organizations A and B have agreed on B providing certain services for A, yet B wants to source

the actual delivery of those services to third-party C. This can be represented in the ontology as

follows:

 A, B, and C are instances of HumanActor.

 Service is an instance of Service.

 C provides Service.

 ServiceContract is an instance of ServiceContract.

 ServiceContract isContractFor Service.

 ServiceContract involvesParty A.

 ServiceContract involvesParty B.

The legalAspect datatype property on ServiceContract describes the legal obligation of B to

provide Service for A.

4.10.3 Car Wash Example

See Section 8.2 for the complete Service and ServiceContract aspects of the car wash example.

4.11 The ServiceInterface Class

<owl:Class rdf:about="#ServiceInterface">

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Effect"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

</owl:Class>

An important characteristic of services is that they have simple, well-defined interfaces. This

makes it easy to interact with them, and enables other elements to use them in a structured

32 Technical Standard (2010)

manner. A service interface defines the way in which other elements can interact and exchange

information with a service. This concept is captured by the ServiceInterface OWL class which

is illustrated below (in Figure 11).

Figure 11: The ServiceInterface Class

The concept of an interface is in general well understood by practitioners, including the notion

that interfaces define the parameters for information passing in and out of them when invoked.

What differs from domain to domain is the specific nature of how an interface is invoked and

how information is passed back and forth. Service interfaces are typically, but not necessarily,

message-based (to support loose-coupling). Furthermore, service interfaces are always defined

independently from any service implementing them (to support loose-coupling and service

mediation).

From a design perspective interfaces may have more granular operations or may be composed of

other interfaces. We have chosen to stay at the concept level and not include such design aspects

in the ontology.

ServiceInterface is defined as disjoint with the Service, ServiceContract, and Effect classes.

Instances of these classes are considered not to define (by themselves) the way in which other

elements can interact and exchange information with a service. Note that there is a natural

synergy between ServiceInterface and the interactionAspect datatype property on

ServiceContract, as the latter defines any multi-interaction and/or sequencing constraints on

how to use a service through interaction with its service interfaces.

4.11.1 The Constraints Datatype Property

<owl:DatatypeProperty rdf:about="#constraints">

 <rdfs:domain rdf:resource="#ServiceInterface"/>

</owl:DatatypeProperty>

<owl:Class rdf:about="#ServiceInterface">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="constraints"/>

Service-Oriented Architecture Ontology 33

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#constraints"/>

 </owl:onProperty>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

The Constraints datatype property on ServiceInterface captures the notion that there can be

constraints on the allowed interaction such as only certain value ranges allowed on given

parameters. Depending on the nature of the service and the service interface in question, these

constraints may be defined either formally or informally (the informal case being relevant at a

minimum for certain types of real-world services).

4.12 The hasInterface and isInterfaceOf Properties

<owl:ObjectProperty rdf:about="#hasInterface">

 <rdfs:domain rdf:resource="#Service"/>

 <rdfs:range rdf:resource="#ServiceInterface"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isInterfaceOf">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#hasInterface"/>

 </owl:inverseOf>

</owl:ObjectProperty>

<owl:Class rdf:about="#Service">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasInterface"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

34 Technical Standard (2010)

The hasInterface property, and its inverse isInterfaceOf, capture the abstract notion of a

service having a particular service interface.

In one direction, any service must have at least one service interface; anything else would be

contrary to the definition of a service as a representation of a repeatable activity that has a

specified outcome and is a „black box‟ to its consumers. In the other direction, there can be

service interfaces that are not yet interfaces of any defined services. Also, the same service

interface can be an interface of multiple services. The latter does not mean that these services are

the same, nor even that they have the same effect; it only means that it is possible to interact

with all these services in the manner defined by the service interface in question.

4.13 The InformationType Class

<owl:Class rdf:ID="InformationType">

 <owl:disjointWith>

 <owl:Class rdf:ID="Effect"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

</owl:Class>

A service interface can enable another element to give information to or receive information

from a service (when it uses that service); specifically the types of information given or

received. The concept of information type is captured by the InformationType OWL class,

which is illustrated below (in Figure 12).

Figure 12: The InformationType Class

In any concrete interaction through a service interface the information types on that interface are

instantiated by information items, yet for the service interface itself it is the types that are

important. Note that the constraints datatype property on ServiceInterface, if necessary, can be

used to express constraints on allowed values for certain information types.

Service-Oriented Architecture Ontology 35

4.14 The hasInput and isInputAt Properties

<owl:ObjectProperty rdf:ID="hasInput">

 <rdfs:domain rdf:resource="#ServiceInterface"/>

 <rdfs:range rdf:resource="#InformationType"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isInputAt">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasInput"/>

 </owl:inverseOf>

</owl:ObjectProperty>

The hasInput property, and its inverse isInputAt, capture the abstract notion of a particular type

of information being given when interacting with a service through a service interface.

Note that there is a many-to-many relationship between service interfaces and input information

types. A given information type may be input at many service interfaces or none at all.

Similarly, a given service interface may have many information types as input or none at all. It is

important to realize that some services may have only inputs (triggering an asynchronous action

without a defined response) and other services may have only outputs (elements performing

these services execute independently yet may provide output that is used by other elements).

4.15 The hasOutput and isOutputAt Properties

<owl:ObjectProperty rdf:ID="hasOutput">

 <rdfs:domain rdf:resource="#ServiceInterface"/>

 <rdfs:range rdf:resource="#InformationType"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isOutputAt">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasOutput"/>

 </owl:inverseOf>

</owl:ObjectProperty>

The hasOutput property, and its inverse isOutputAt, capture the abstract notion of a particular

type of information being received when interacting with a service through a service interface.

Note that there is a many-to-many relationship between service interfaces and output

information types. A given information type may be output at many service interfaces or none at

all. Similarly, a given service interface may have many information types as output or none at

all. It is important to realize that some services may have only inputs (triggering an

asynchronous action without a defined response) and other services may have only outputs

(elements performing these services execute independently yet may provide output that is used

by other elements).

36 Technical Standard (2010)

4.16 Examples

4.16.1 Interaction Sequencing

A service contract on a service expresses that the services interfaces on that service must be used

in a certain order:

 Service is an instance of Service.

 ServiceContract is an instance of ServiceContract.

 ServiceContract isContractFor Service.

 X is an instance of ServiceInterface.

 X isInterfaceOf Service.

 Y is an instance of ServiceInterface.

 Y isInterfaceOf Service.

The interactionAspect datatype property on ServiceContract describes that X must be used

before Y may be used.

4.16.2 Car Wash Example

See Section 8.2 for the complete ServiceInterface aspect of the car wash example.

Service-Oriented Architecture Ontology 37

5 Composition and its Subclasses

5.1 Introduction

The notion of composition is a core concept of SOA. Services can be composed of other

services. Processes are composed of human actors, tasks, and possibly services. Experienced

SOA practitioners intuitively apply composition as an integral part of architecting, designing,

and realizing SOA systems; in fact, any well structured SOA environment is intrinsically

composite in the way services and processes support business capabilities. What differs from

practitioner to practitioner is the exact nature of the composition – the composition pattern being

applied.

This chapter describes the following classes of the ontology:

 Composition (as a subclass of System)

 ServiceComposition (as a subclass of Composition)

 Process (as a subclass of Composition)

In addition, it defines the following datatype property:

 compositionPattern

5.2 The Composition Class

<owl:Class rdf:about="#Composition">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="System"/>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

</owl:Class>

A composition is the result of assembling a collection of things for a particular purpose. Note in

particular that we have purposefully distinguished between the act of composing and the

resulting composition as a thing, and that it is in the latter sense we are using the concept of

composition here. The concept of composition is captured by the Composition OWL class,

which is illustrated below (in Figure 13).

38 Technical Standard (2010)

Figure 13: The Composition Class

Being intrinsically (also) an organized collection of other, simpler things, the Composition class

is a subclass of the System class. While a composition is always also a system, a system is not

necessarily a composition in that it is not necessarily a result of anything – note here the

difference between a system producing a result and the system itself being a result. A perhaps

more tangible difference between a system and a composition is that the latter must have

associated with it a specific composition pattern that renders the composition (as a whole) as the

result when that composition pattern is applied to the elements used in the composition. One

implication of this is that there is not a single member of a composition that represents (as an

element) that composition as a whole; in other words, the composition itself is not one of the

things being assembled. On the other hand, composition is in fact a recursive concept (as are all

subclasses of System) – being a system, a composition is also an element which means that it

can be used by a higher-level composition.

In the context of the SOA ontology we consider in detail only functional compositions that

belong to the SOA domain. Note that a fully described instance of Composition must have by

its nature a uses relationship to at least one instance of Element. (It need not necessarily have

more than one as the composition pattern applied may be, for instance, simply a transformation.)

Again (as for System) it is important to realize that a composition can use elements outside its

own boundary.

Since Composition is a subclass of Element, all compositions have a boundary and are opaque

to an external observer (black box view). The composition pattern in turn is the internal

viewpoint (white box view) of a composition. As an example, for the notion of a service

composition this would correspond to the difference between seeing the service composition as

an element providing a (higher-level) service or seeing the service composition as a composite

structure of (lower-level) services.

5.2.1 The compositionPattern Datatype Property

<owl:DatatypeProperty rdf:about="#compositionPattern">

 <rdfs:domain rdf:resource="#Composition"/>

</owl:DatatypeProperty>

<owl:Class rdf:about="#Composition">

Service-Oriented Architecture Ontology 39

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="compositionPattern"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="compositionPattern"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

As discussed above, any composition must have associated with it a specific composition

pattern, that pattern describing the way in which a collection of elements is assembled to a

result. The concept of a composition pattern is captured by the compositionPattern datatype

property. Note that even though certain kinds of composition patterns are of special interest

within SOA (see below), the compositionPattern datatype property may take any value as long

as that value describes how to assemble the elements used by the composition with which it is

associated.

The Orchestration Composition Pattern

One kind of composition pattern that has special interest within SOA is an orchestration. In an

orchestration (a composition whose composition pattern is an orchestration), there is one

particular element used by the composition that oversees and directs the other elements. Note

that the element that directs an orchestration by definition is different than the orchestration

(Composition instance) itself.

Think of an orchestrated executable workflow as an example of an orchestration. The workflow

construct itself is one of the elements being used in the composition, yet it is different from the

composition itself – the composition itself is the result of applying (executing) the workflow on

the processes, human actors, services, etc. that are orchestrated by the workflow construct.

A non-IT example is the foreman of a road repair crew. If the foreman chooses to exert direct

control over the tasks done by his crew, than the resulting composition becomes an orchestration

(with the foreman as the director and provider of the composition pattern). Note that under other

circumstances, with a different team composition model, a road repair crew can also act as a

collaboration or a choreography. (See below for definitions of collaboration and choreography.)

40 Technical Standard (2010)

As the last example clearly shows, using an orchestration composition pattern is not a guarantee

that “nothing can go wrong”. That would, in fact, depend on the orchestration director‟s ability

to handle exceptions.

The Choreography Composition Pattern

Another kind of composition pattern that has special interest within SOA is a choreography. In a

choreography (a composition whose composition pattern is a choreography) the elements used

by the composition interact in a non-directed fashion, yet with each autonomous member

knowing and following a predefined pattern of behavior for the entire composition.

Think of a process model as an example of a choreography. The process model does not direct

the elements within it, yet does provide a predefined pattern of behavior that each such element

is expected to conform to when “executing”.

The Collaboration Composition Pattern

A third kind of composition pattern that has special interest within SOA is a collaboration. In a

collaboration (a composition whose composition pattern is a collaboration) the elements used by

the composition interact in a non-directed fashion, each according to their own plans and

purposes without a predefined pattern of behavior. Each element simply knows what it has to do

and does it independently, initiating interaction with the other members of the composition as

applicable on its own initiative. This means that there is no overall predefined “flow” of the

collaboration, though there may be a run-time “observed flow of interactions”.

A good example of a collaboration is a work meeting. There is no script for how the meeting

will unfold and only after the meeting has concluded can we describe the sequence of

interactions that actually occurred.

5.3 The orchestrates and orchestratedBy Properties

<owl:ObjectProperty rdf:about="#orchestratedBy">

 <rdfs:domain rdf:resource="#Composition"/>

 <rdfs:range rdf:resource="#Element"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#orchestrates">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="orchestratedBy"/>

 </owl:inverseOf>

</owl:ObjectProperty>

<owl:Class rdf:about="#Composition">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

Service-Oriented Architecture Ontology 41

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="orchestratedBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="orchestratedBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Element">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="orchestrates"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#orchestrates"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

As defined above, an orchestration has one particular element that oversees and directs the other

elements used by the composition. This type of relationship is important enough that we have

chosen to capture the abstract notion in the orchestrates property and its inverse

orchestratedBy.

In one direction, a composition has at most one element that orchestrates it, and the cardinality

can only be one (1) if in fact the composition pattern of that composition is an orchestration. In

the other direction, an element can orchestrate at most one composition which then must have an

orchestration as its composition pattern.

42 Technical Standard (2010)

Note that in practical applications of the ontology, even though Service is a subclass of

Element, a service (as a purely logical representation) is not expected to orchestrate a

composition.

5.4 The ServiceComposition Class

<owl:Class rdf:ID="ServiceComposition">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Composition"/>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

</owl:Class>

A key SOA concept is the notion of service composition, the result of assembling a collection of

services in order to perform a new higher-level service. The concept of service composition is

captured by the ServiceComposition OWL class, which is illustrated below (in Figure 14).

Figure 14: The ServiceComposition Class

As a service composition is the result of assembling a collection of services,

ServiceComposition is naturally a subclass of Composition.

A service composition may, and typically will, add logic (or even “code”) via the composition

pattern. Note that a service composition is not the new higher-level service itself (due to the

System and Service classes being disjoint); rather it performs (as an element) that higher-level

service.

5.5 The Process Class

<owl:Class rdf:ID="Process">

 <rdfs:subClassOf>

Service-Oriented Architecture Ontology 43

 <owl:Class rdf:ID="Composition"/>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

</owl:Class>

Another key SOA concept is the notion of process. A process is a composition whose elements

are composed into a sequence or flow of activities and interactions with the objective of carrying

out certain work. This definition is consistent with, for instance, the Business Process Modeling

Notation (BPMN) 2.0 definition of a process. The concept of process is captured by the Process

OWL class, which is illustrated below (in Figure 15).

Figure 15: The Process Class

Elements in process compositions can be things like human actors, tasks, services, other

processes, etc. A process always adds logic via the composition pattern; the result is more than

the parts. According to their collaboration pattern, processes can be:

 Orchestrated: When a process is orchestrated in a business process management system,

then the resulting IT artifact is in fact an orchestration; i.e., it has an orchestration

collaboration pattern. This type of process is often called a process orchestration.

 Choreographed: For example, a process model representing a defined pattern of

behavior. This type of process is often called a process choreography.

 Collaborative: No (pre)defined pattern of behavior (model); the process represents

observed (executed) behavior.

44 Technical Standard (2010)

5.6 Service Composition and Process Examples

5.6.1 Simple Service Composition Example

Using a service composition example, services A and B are instances of Service and the

composition of A and B is an instance of ServiceComposition (that uses A and B):

 A and B are instances of Service.

 X is an instance of ServiceComposition.

 X uses both A and B (composes them according to its service composition pattern).

Note that there are various ways in which the service composition pattern can compose A and B,

all of which are relevant in one situation or another. For example, interfaces of X may or may

not include some subset of the interfaces of A and B. Furthermore, the interfaces of A and B

may or may not also be (directly) invocable without going through X – that is a matter of the

service contracts and/or access policies that apply to A and B. Finally, X may also use other

elements that are not services at all (examples are composition code, adaptors, etc.).

5.6.2 Process Example

Using a process example, tasks T1 and T2 are instances of Task, roles R1 and R2 are instances

of Element, and the composition of T1, T2, R1, and R2 is an instance of Process (that uses T1,

T2, R1, and R2):

 T1 and T2 are instances of Task.

 R1 and R2 are instances of Element.

 Y is an instance of Process.

 Y uses all of T1, T2, R1, and R2 (composes them according to its process composition

pattern).

5.6.3 Process and Service Composition Example

Elaborating on the process example above, if T1 is done using service S then:

 S is an instance of Service.

 T1 uses S.

Note that depending on the particular design approach chosen (and the resulting composition

pattern), Y may or may not use S directly. This depends on whether Y carries the binding

between T1 and S or whether that binding is encapsulated in T1.

5.6.4 Car Wash Example

See Section 8.3 for the Process aspect of the car wash example.

Service-Oriented Architecture Ontology 45

6 Policy

6.1 Introduction

Policies, the human actors defining them, and the things that they apply to are important aspects

of any system, certainly also SOA systems with their many different interacting elements.

Policies can apply to any element in a system. The concept of policy is captured by the Policy

class and its relationships to the HumanActor and Thing classes.

This chapter describes the following classes of the ontology:

 Policy

In addition, it defines the following properties:

 appliesTo and isSubjectTo

 setsPolicy and isSetBy

6.2 The Policy Class

<owl:Class rdf:about="#Policy">

 <owl:disjointWith>

 <owl:Class rdf:ID="InformationType"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Element"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Effect"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Event"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

</owl:Class>

A policy is a statement of direction that a human actor may intend to follow or may intend that

another human actor should follow. Knowing the policies that apply to something makes it

46 Technical Standard (2010)

easier and more transparent to interact with that something. The concept of policy is captured by

the Policy OWL class, which is illustrated below (in Figure 16).

Figure 16: The Policy Class

Policy as a concept is generic and has relevance outside the domain of SOA. For the purposes of

this SOA ontology it has not been necessary or relevant to restrict the generic nature of the

Policy class itself. The relationships between Policy and HumanActor are of course bound by

the SOA-specific restrictions that have been applied on the definition of HumanActor.

From a design perspective policies may have more granular parts or may be expressed and made

operational through specific rules. We have chosen to stay at the concept level and not include

such design aspects in the ontology.

Policy is distinct from all other concepts in this ontology, hence the Policy class is defined as

disjoint with all other defined classes. In particular, Policy is disjoint with ServiceContract.

While policies may apply to service contracts – such as security policies on who may change a

given service contract – or conversely be referred to by service contracts as part of the terms,

conditions, and interaction rules that interacting participants must agree to, service contracts are

themselves not policies as they do not describe an intended course of action.

Service-Oriented Architecture Ontology 47

6.3 The appliesTo and isSubjectTo Properties

<owl:ObjectProperty rdf:ID="appliesTo">

 <rdfs:domain rdf:resource="#Policy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isSubjectTo">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="appliesTo"/>

 </owl:inverseOf>

</owl:ObjectProperty>

Policies can apply to things other than elements; in fact, policies can apply to anything at all,

including other policies. For instance, a security policy might specify which actors have the

authority to change some other policy. The appliesTo property, and its inverse isSubjectTo,

capture the abstract notion that a policy can apply to any instance of Thing. Note specifically

that Element is a subclass of Thing, hence policies by inference can apply to any instance of

Element.

In one direction, a policy can apply to zero (in the case where a policy has been formulated but

not yet explicitly applied to anything), one, or more instances of Thing. Note that having a

policy apply to multiple things does not mean that these things are the same, only that they are

(partly) regulated by the same intent. In the other direction, an instance of Thing may be subject

to zero, one, or more policies. Note that where multiple policies apply to the same instance of

Thing this is often because the multiple policies are from multiple different policy domains

(such as security and governance).

The SOA ontology does not attempt to enumerate different policy domains; such policy-focused

details are deemed more appropriate for a policy ontology. It is worth pointing out that a

particular policy ontology may also restrict (if desired) the kinds of things that policies can apply

to.

6.4 The setsPolicy and isSetBy Properties

<owl:ObjectProperty rdf:about="#setsPolicy">

 <rdfs:domain rdf:resource="#HumanActor"/>

 <rdfs:range rdf:resource="#Policy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isSetBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="setsPolicy"/>

 </owl:inverseOf>

</owl:ObjectProperty>

The setsPolicy property, and its inverse isSetBy, capture the abstract notion that a policy can be

set by one or more human actors.

48 Technical Standard (2010)

In one direction, a policy can be set by zero (in the case where actors setting the policy by choice

are not defined or captured), one, or more human actors. Note specifically that some policies are

set by multiple human actors in conjunction, meaning that all these human actors need to discuss

and agree on the policy before it can take effect. A real-world example would be two parents in

conjunction setting policies for acceptable child behavior. In the other direction, a human actor

may potentially set (or be part of setting) multiple policies.

The SOA ontology purposefully separates the setting of the policy itself and the application of

the policy to one or more instances of Thing. In some cases these two acts may be inseparably

bound together, yet in other cases they are definitely not. One such example is an overall

compliance policy that is formulated at the corporate level yet applied by the compliance officer

in each line of business.

Also, while a particular case of interest for this ontology is that where the provider of a service

has a policy for the service, a policy for a service is not necessarily owned by the provider. For

example, government food and hygiene regulations (a policy that is law) cover restaurant

services independently of anything desired or defined by the restaurant owner.

6.5 Examples

6.5.1 Car Wash Example

See The Washing Policies (Section 8.4) for the Policy aspect of the car wash example.

Service-Oriented Architecture Ontology 49

7 Event

7.1 Introduction

Events and the elements that generate or respond to them are important aspects of any event

emitting system. SOA systems are in fact often event emitting, hence event is defined as a

concept in the SOA ontology.

This chapter describes the following classes of the ontology:

 Event

In addition, it defines the following properties:

 generates and generatedBy

 respondsTo and respondedToBy

7.2 The Event Class

<owl:Class rdf:about="#Event">

 <owl:disjointWith>

 <owl:Class rdf:ID="Policy"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

</owl:Class>

An event is something that happens, to which an element may choose to respond. Events can be

responded to by any element. Similarly, events may be generated (emitted) by any element.

Knowing the events generated or responded to by an element makes it easier and more

transparent to interact with that element. Note that some events may occur whether generated or

responded to by an element or not. The concept of event is captured by the Event OWL class,

which is illustrated below (in Figure 17).

50 Technical Standard (2010)

Figure 17: The Event Class

Event as a concept is generic and has relevance to the domain of SOA as well as many other

domains. For the purposes of this ontology, event is used in its generic sense.

From a design perspective events may have more granular parts or may be expressed and made

operational through specific syntax or semantics. We have chosen to stay at the concept level

and not include such design aspects in the ontology.

7.3 The generates and generatedBy Properties

<owl:ObjectProperty rdf:ID="generates">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Event"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="generatedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="generates"/>

 </owl:inverseOf>

</owl:ObjectProperty>

Events can, but need not necessarily, be generated by elements. The generates property, and its

inverse generatedBy, capture the abstract notion that an element generates an event.

Note that the same event may be generated by many different elements. Similarly, the same

element may generate many different events.

7.4 The respondsTo and respondedToBy Properties

<owl:ObjectProperty rdf:ID="respondsTo">

Service-Oriented Architecture Ontology 51

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Event"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="respondedToBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="respondsTo"/>

 </owl:inverseOf>

</owl:ObjectProperty>

Events can, but need not necessarily, be responded to by elements. The respondsTo property,

and its inverse respondedToBy, capture the abstract notion that an element responds to an

event.

Note that the same event may be responded to by many different elements. Similarly, the same

element may respond to many different events.

52 Technical Standard (2010)

8 Complete Car Wash Example

This chapter contains the complete car wash example that has been used in parts throughout the

definitional chapters of the ontology.

8.1 The Organizational Aspect

Joe the owner chooses to organize his business into two organizational units: Administration

and CarWash:

 CarWashBusiness is an instance of both HumanActor and System.

 Administration is an instance of HumanActor (organizational unit).

 CarWash is an instance of HumanActor (organizational unit).

 CarWashBusiness uses (has organizational units) Administration and CarWash.

 AdministrativeSystem is an instance of System.

 Administration represents AdministrativeSystem.

 CarWashSystem is an instance of System.

 CarWash represents CarWashSystem.

And using well-defined roles within each organization:

 Owner (role) is an instance of Element and is used by AdministrativeSystem.

 Joe is an instance of HumanActor and is represented by (has role) Owner.

 Secretary (role) is an instance of Element and is used by AdministrativeSystem.

 Mary is an instance of HumanActor and is represented by (has role) Secretary.

 PreWashGuy (role) is an instance of Element and is used by CarWashSystem.

 John is an instance of HumanActor and is represented by (has role) PreWashGuy.

 WashManager (role) is an instance of Element and is used by CarWashSystem.

 WashOperator (role) is an instance of Element and is used by CarWashSystem.

 Jack is an instance of HumanActor and is represented by (has roles) both

WashManager and WashOperator.

Service-Oriented Architecture Ontology 53

Figure 18: Car Wash Example – The Organizational Aspect

8.2 The Washing Services

Joe offers two different services to his customers: a basic wash and a gold wash:

 GoldWash is an instance of Service.

 BasicWash is an instance of Service.

 CarWash performs both BasicWash and GoldWash.

 WashManager represents both BasicWash and GoldWash (i.e., it is the interaction point

where customers can order services as well as pay for them).

In return for payment, Joe‟s BasicWash service cleans the car of customer Judy:

 Judy is an instance of HumanActor (the customer).

 BasicWashContract is an instance of ServiceContract.

 BasicWash has contract BasicWashContract.

 CleanCar is an instance of Effect.

 BasicWashContract specifies CleanCar as its effect.

54 Technical Standard (2010)

 BasicWashContract involves parties CarWashBusiness and Judy and specifies that

Judy (as the legal consumer) pays CarWashBusiness (as the legal provider) $10 for the

one consumption of BasicWash with the effect of (one) CleanCar. Note that BasicWash

is actually performed by CarWash and not by the legal provider CarWashBusiness – in

this particular example CarWash happens to be a member of CarWashBusiness but such

need not always be the case, CarWash could have been some third-party provider.

 Judy uses WashManager (in order to invoke the BasicWash service).

Note that in this example Judy does not interact with the (abstract) BasicWash service directly,

rather she interacts with the WashManager that represents the service. This is due to Joe

deciding that in his car wash customers are not to interact with the washing machinery directly.

Figure 19: Car Wash Example – The Washing Services

Service-Oriented Architecture Ontology 55

8.2.1 Interfaces to the Washing Services

The way to interact with the car wash services is simple for the customer; he or she simply gives

money to the wash manager and asks to have the car washed using one of the two available wash

services. Due to the fact that Joe has decided to interpose the wash manager between the

customer and the washing machine, the customer actually never interacts with the wash services

themselves. We could have chosen to formally define a proxy service provided by the wash

manager but have omitted that level of formality in this real-world example.

The wash manager in turn does interact with the wash services through their interfaces defined

as follows:

 WashingMachineInterface is an instance of ServiceInterface.

 TypeOfWash is an instance of InformationType.

 WashingMachineInterface has input TypeOfWash.

 BasicWash has interface WashingMachineInterface.

 GoldWash has interface WashingMachineInterface.

Note how both washing services in fact have the same service interface. Even though Joe has

chosen to offer basic wash and gold wash as two different services, both are in effect done by

the same washing machine (one simply has to choose the type of wash when initializing the

washing machine).

8.3 The Washing Processes

An important part of the car wash system is the car washing process itself:

 AutomatedCarWashProcess is an instance of both Process and Orchestration.

 Wash is an instance of Task and is used by AutomatedCarWashProcess.

 Dry is an instance of Task and is used by AutomatedCarWashProcess.

 AutomatedCarWash is an instance of Element (the automated washing machine) and

represents AutomatedCarWashProcess (encapsulates the process) as well as directs

AutomatedCarWashProcess.

 CarWashProcess is an instance of Process and is used by (part of) CarWashSystem (no

need to create an explicit opaque building block).

 AutomatedCarWash is used by CarWashProcess (automated activity in the process).

 WashWindows is an instance of Task and is done by John.

 PreWash is an instance of Element, represents WashWindows, and is used by

CarWashProcess (logical activity in the process).

56 Technical Standard (2010)

 PrewashGuy is a member of CarWashProcess (role in the process).

 PushWashButton is an instance of Task and is done by Jack.

 InitiateAutomatedWash is an instance of Element, represents PushWashButton, and is

used by CarWashProcess (logical activity in the process).

 WashOperator is a member of CarWashProcess (role in the process).

Figure 20: Car Wash Example – The Washing Processes

8.4 The Washing Policies

Joe sets a payment up-front policy for the washing services:

 PaymentUpFront is an instance of Policy.

 PaymentUpFront is set by Joe.

Service-Oriented Architecture Ontology 57

 PaymentUpFront applies to both GoldWash and BasicWash.

Note how the PaymentUpFront policy enhances the service contract BasicWashContract.

While BasicWashContract only specifies that Judy has to pay $10 for one consumption of the

BasicWash service, the PaymentUpFront policy makes it specific that payment has to happen

up-front. One of the advantages of separating policy from service contract is that the payment

policy can be changed independently of the service contract. For instance, at some later point in

time Joe may decide that recurring customers need not pay up-front, and can institute this

change in policy without changing anything else related to CarWashBusiness.

58 Technical Standard (2010)

9 Internet Purchase Example

Jill is purchasing a new TV on the Internet through an online sales site:

 Jill is an instance of Actor (person).

 PurchaseTV is an instance of Task.

 Jill does PurchaseTV.

 BuyTVOnline is an instance of Service.

 PurchaseTV uses BuyTVOnline.

OnlineTVSales is the company that is selling TVs:

 OnlineTVSales is an instance of Actor (organization).

 BuyTVOnlineContract is an instance of ServiceContract (and describes how to interact

with BuyTVOnline as well as the legal contract between TV buyer and OnlineTVSales).

 BuyTVOnline has contract BuyTVOnlineContract.

 OnlineTVSales is party to BuyTVOnlineContract.

 Jill is party to BuyTVOnlineContract.

The online site is implemented using web site software:

 OnlineSalesComponent is an instance of Element.

 OnlineSalesComponent performs OnlineTVSales.

 SelectWhatToBuyComponent is an instance of Element.

 SelectWhatToBuyService is an instance of Service.

 SelectWhatToBuyComponent performs SelectWhatToBuyService.

 PayComponent is an instance of Element.

 PayService is an instance of Service.

 PayComponent performs PayService.

 OnlineSalesComponent is also an instance of ServiceComposition.

 OnlineSalesComponent uses SelectWhatToBuyService and PayService.

Service-Oriented Architecture Ontology 59

To complete the purchase transaction, Jill needs to pay for the purchase and then the TV will be

delivered:

 PayForTV is an instance of Task.

 Jill does PayForTV.

 PayForTV uses BuyTVOnline.

 DeliverTV is an instance of Task.

 OnlineTVSales does DeliverTV.

 OnlineTVSalesProcess is an instance of Process.

 OnlineTVSalesProcess uses Jill, OnlineTVSales, PurchaseTV, PayForTV, and

DeliverTV.

60 Technical Standard (2010)

A The OWL Definition of the Ontology

The OWL ontology is available online at:

http://www.opengroup.org/soa/ontology/20101021/soa.owl

and is reproduced below.

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.semanticweb.org/ontologies/2010/01/core-soa.owl#"

 xml:base="http://www.semanticweb.org/ontologies/2010/01/core-

soa.owl"

>

 <!-- ontology -->

 <owl:Ontology rdf:about=""/>

 <!-- classes -->

 <owl:Class rdf:ID="Event">

 <owl:disjointWith>

 <owl:Class rdf:ID="Policy"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:ID="InformationType">

 <owl:disjointWith>

 <owl:Class rdf:about="#Policy"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Effect"/>

 </owl:disjointWith>

 </owl:Class>

http://www.opengroup.org/soa/ontology/20101021/soa.owl

Service-Oriented Architecture Ontology 61

 <owl:Class rdf:ID="ServiceComposition">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Composition"/>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:ID="Effect">

 <owl:disjointWith>

 <owl:Class rdf:about="#Policy"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="InformationType"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="isSpecifiedBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Task">

 <owl:disjointWith>

 <owl:Class rdf:ID="Policy"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="System"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

62 Technical Standard (2010)

 <owl:disjointWith>

 <owl:Class rdf:ID="Composition"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Element"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="doneBy"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#doneBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#System">

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Element"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Service">

 <owl:disjointWith>

 <owl:Class rdf:ID="System"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

Service-Oriented Architecture Ontology 63

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Element"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasInterface"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Policy">

 <owl:disjointWith>

 <owl:Class rdf:ID="InformationType"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Element"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Effect"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Event"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 </owl:Class>

 <owl:Class rdf:about="#HumanActor">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Element"/>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 </owl:Class>

64 Technical Standard (2010)

 <owl:Class rdf:about="#Composition">

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="System"/>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="compositionPattern"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="compositionPattern"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="orchestratedBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="orchestratedBy"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#ServiceInterface">

 <owl:disjointWith>

 <owl:Class rdf:ID="Service"/>

Service-Oriented Architecture Ontology 65

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Effect"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Policy"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceComposition"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Process"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Event"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="constraints"/>

 </owl:onProperty>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#constraints"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#Element">

 <owl:disjointWith>

 <owl:Class rdf:ID="Policy"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Restriction>

66 Technical Standard (2010)

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="orchestrates"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#orchestrates"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#ServiceContract">

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Policy"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="HumanActor"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Task"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceComposition"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Process"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="Event"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="InformationType"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="legalAspect"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

Service-Oriented Architecture Ontology 67

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="legalAspect"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:ID="interactionAspect"/>

 </owl:onProperty>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#interactionAspect"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="isContractFor"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="specifies"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

68 Technical Standard (2010)

 <owl:Class rdf:about="#Process">

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceContract"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="ServiceInterface"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Composition"/>

 </rdfs:subClassOf>

 </owl:Class>

 <!-- object properties -->

 <owl:ObjectProperty rdf:about="#isPartyTo">

 <rdfs:domain rdf:resource="#HumanActor"/>

 <rdfs:range rdf:resource="#ServiceContract"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="involvesParty">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="isPartyTo"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#orchestratedBy">

 <rdfs:domain rdf:resource="#Composition"/>

 <rdfs:range rdf:resource="#Element"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#orchestrates">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="orchestratedBy"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isContractFor">

 <rdfs:domain rdf:resource="#ServiceContract"/>

 <rdfs:range rdf:resource="#Service"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasContract">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#isContractFor"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#setsPolicy">

 <rdfs:domain rdf:resource="#HumanActor"/>

 <rdfs:range rdf:resource="#Policy"/>

 </owl:ObjectProperty>

Service-Oriented Architecture Ontology 69

 <owl:ObjectProperty rdf:ID="isSetBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="setsPolicy"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="generates">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Event"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="generatedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="generates"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#represents">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Element"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="representedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="represents"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasInput">

 <rdfs:domain rdf:resource="#ServiceInterface"/>

 <rdfs:range rdf:resource="#InformationType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isInputAt">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasInput"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#doneBy">

 <rdfs:domain rdf:resource="#Task"/>

 <rdfs:range rdf:resource="#HumanActor"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="does">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#doneBy"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#specifies">

 <rdfs:domain rdf:resource="#ServiceContract"/>

 <rdfs:range rdf:resource="#Effect"/>

70 Technical Standard (2010)

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#isSpecifiedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#specifies"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="appliesTo">

 <rdfs:domain rdf:resource="#Policy"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isSubjectTo">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="appliesTo"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasInterface">

 <rdfs:domain rdf:resource="#Service"/>

 <rdfs:range rdf:resource="#ServiceInterface"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isInterfaceOf">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:about="#hasInterface"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="respondsTo">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Event"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="respondedToBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="respondsTo"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="performs">

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:range rdf:resource="#Service"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="performedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="performs"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#uses">

 <rdfs:domain rdf:resource="#Element"/>

Service-Oriented Architecture Ontology 71

 <rdfs:range rdf:resource="#Element"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="usedBy">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="uses"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasOutput">

 <rdfs:domain rdf:resource="#ServiceInterface"/>

 <rdfs:range rdf:resource="#InformationType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isOutputAt">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasOutput"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <!-- datatype properties -->

 <owl:DatatypeProperty rdf:about="#legalAspect">

 <rdfs:domain rdf:resource="#ServiceContract"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#constraints">

 <rdfs:domain rdf:resource="#ServiceInterface"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#compositionPattern">

 <rdfs:domain rdf:resource="#Composition"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#interactionAspect">

 <rdfs:domain rdf:resource="#ServiceContract"/>

 </owl:DatatypeProperty>

</rdf:RDF>

72 Technical Standard (2010)

B Relationship to Other SOA Standards

A White Paper – Navigating the SOA Open Standards Landscape Around Architecture – has

been written that positions the SOA Ontology with other architectural standards. This joint

White Paper from OASIS, OMG, and The Open Group was written to help the SOA community

at large navigate the myriad of overlapping technical products produced by these organizations

with specific emphasis on the “A” in SOA; i.e., Architecture.

This joint White Paper explains and positions standards for SOA reference models, ontologies,

reference architectures, maturity models, modeling languages, and standards work on SOA

governance. It outlines where the works are similar, highlights the strengths of each body of

work, and touches on how the work can be used together in complementary ways.. It is also

meant as a guide to users of these specifications for selecting the technical products most

appropriate for their needs, consistent with where they are today and where they plan to head on

their SOA journeys.

The following is a summary of the positioning and guidance on the specifications:

 The OASIS Reference Model for SOA (SOA RM) is the most abstract of the

specifications positioned. It is used for understanding of core SOA concepts.

 The Open Group SOA Ontology extends, refines, and formalizes some of the core

concepts of the SOA RM. It is used for understanding of core SOA concepts and

facilitates a model-driven approach to SOA development.

 The OASIS Reference Architecture for SOA Foundation is an abstract, foundation

reference architecture addressing the ecosystem viewpoint for building and interacting

within the SOA paradigm. It is used for understanding different elements of SOA, the

completeness of SOA architectures and implementations, and considerations for cross-

ownership boundaries where there is no single authoritative entity for SOA and SOA

governance.

 The Open Group SOA Reference Architecture is a layered architecture from the consumer

and provider perspective with cross-cutting concerns describing these architectural

building blocks and principles that support the realizations of SOA. It is used for

understanding the different elements of SOA, deployment of SOA in the enterprise, basis

for an industry or organizational reference architecture, implication of architectural

decisions, and positioning of vendor products in SOA context.

 The Open Group SOA Governance Framework is a governance domain reference model

and method. It is for understanding SOA governance in organizations. The OASIS

Reference Architecture for SOA Foundation contains an abstract discussion of

governance principles as applied to SOA with particular application to governance across

boundaries.

Service-Oriented Architecture Ontology 73

 The Open Group SOA Integration Maturity Model (OSIMM) is a means to assess an

organization‟s maturity within a broad SOA spectrum and define a roadmap for

incremental adoption. It is used for understanding the level of SOA maturity in an

organization.

 The Object Management Group SoaML Specification supports services modeling UML

extensions. It can be seen as an instantiation of a subset of The Open Group SOA

Reference Architecture used for representing SOA artifacts in UML.

End-to-end

Enterprise

Reference

Architecture

(ERA)

September 2007, v0.1 SOA-enabled Business Transformation Framework (SBTF) 33

Abstract/ generic/ conceptual

Concrete/ Specific/ physical

Narrow

Architecture

pattern

Comprehen

sive

Full

enterprise

solution

architecture

Generic

Industry

Conceptual

Enterprise

PartialPatterns

MVC

pattern

ESB pattern

implemented

using IBM

WebSphere

stack

ESB pattern

Realised

Enterprise e2e

Solution

Architecture

End-to-end

OASIS

SOA RA

The Open Group

SOA Ontology

HTNG SOA

ARTs SOA

Blueprint

OASIS

SOA RM

The Open Group

SOA RA

Architecture Pattern

(MVC, for example)

Narrow

coverage

End-to-end

coverage

Partial Reference Architecture covering

specific subsystem such as presentation,

integration or security

End-to-end Technical

Reference

Architecture covering

only IT aspects of a

solution

End-to-end Reference

Architecture covering

business and IT aspect of a

solution

The Open Group

Governance

Framework

Figure 21: SOA Standards

Fortunately, there is a great deal of agreement on the foundational core concepts across the many

independent specifications and standards for SOA. This could be best explained by broad and

common experience of users of SOA and its maturity in the marketplace. It also provides

assurance that investing in SOA-based business and IT transformation initiatives that

incorporate and use these specifications and standards helps to mitigate risks that might

compromise a successful SOA solution.

It is anticipated that future work on SOA standards may consider the positioning in this paper to

reduce inconsistencies, overlaps, and gaps between related standards and to ensure that they

continue to evolve in as consistent and complete a manner as possible.

74 Technical Standard (2010)

While the understanding of SOA and SOA Governance concepts provided by these works is

similar, the evolving standards are written from different perspectives. Each specification

supports a similar range of opportunity, but has provided different depths of detail for the

perspectives on which they focus. Therefore, although the definitions and expressions may differ

somewhat, there is agreement on the fundamental concepts of SOA and SOA Governance.

Service-Oriented Architecture Ontology 75

C Class Relationship Matrix

This appendix contains a class relationship matrix that illustrates the class-to-class relationships

intrinsic in the OWL definitions of the SOA ontology. The matrix is deterministically derived

from the OWL ontology definitions. Each row X and each column Y corresponds to an OWL

class. A relation appears in cell (X,Y) if and only if class X is part of the domain and class Y is

part of the range of the corresponding OWL property. Note that this means that datatype

properties (which do not have a range) are not included in the class relationship matrix.

As outlined in the body of the document there are four relationships in the table (plus their

inverses and sub-classed derivatives) that are technically allowed according to the OWL

definitions, but would not be expected to occur in a practical application of the ontology.

Specifically, services are not expected to perform services, services are not expected to use

elements (directly), services are not expected to represent elements, and services are not

expected to orchestrate compositions – all due to the Service class being defined as a logical

representation of a repeatable activity; see The performs and performedBy Properties (Section

4.3), The uses and usedBy Properties Applied to Service (Section 4.4.1), The represents and

representedBy Properties Applied to Service (Section 4.4.2) and The orchestrates and

orchestratedBy Properties (Section 5.3) for details.

 Element System Service Human Actor Task

Element uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

System uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

Service uses

usedBy

represents

representedBy

performedBy

uses

usedBy

represents

representedBy

performedBy

uses

usedBy

represents

representedBy

performs

performedBy

uses

usedBy

represents

representedBy

performedBy

uses

usedBy

represents

representedBy

performedBy

Human Actor uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

does

76 Technical Standard (2010)

 Element System Service Human Actor Task

Task uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

uses

usedBy

represents

representedBy

performs

uses

usedBy

represents

representedBy

doneBy

uses

usedBy

represents

representedBy

Composition uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

performs

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

Process uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

performs

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

Service

Composition

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

performs

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

uses

usedBy

represents

representedBy

orchestratedBy

Service

Contract

 isContractFot involvesParty

Effect

Service

Interface

 isInterfaceOf

Information

Type

Event generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

Policy appliesTo appliesTo appliesTo isSetBy

appliesTo

appliesTo

Thing

 Composition Process

Service

Composition

Service

Contract Effect

Element uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

Service-Oriented Architecture Ontology 77

 Composition Process

Service

Composition

Service

Contract Effect

System uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

Service uses

usedBy

represents

representedBy

performedBy

orchestrates

uses

usedBy

represents

representedBy

performedBy

orchestrates

uses

usedBy

represents

representedBy

performedBy

orchestrates

hasContract

Human Actor uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

isPartyTo

Task uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

uses

usedBy

represents

representedBy

orchestrates

Composition uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

Process uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

Service

Composition

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

uses

usedBy

represents

representedBy

orchestrates

orchestratedBy

Service

Contract

 specifies

Effect isSpecifiedBy

Service

Interface

78 Technical Standard (2010)

 Composition Process

Service

Composition

Service

Contract Effect

Information

Type

Event generatedBy

respondedToBy

generatedBy

respondedToBy

generatedBy

respondedToBy

Policy appliesTo appliesTo appliesTo appliesTo appliesTo

Thing

Service

Interface

Information

Type Event Policy Thing

Element generates

respondsTo

isSubjectTo

System generates

respondsTo

isSubjectTo

Service hasInterface generates

respondsTo

isSubjectTo

Human Actor generates

respondsTo

setsPolicy

isSubjectTo

Task generates

respondsTo

isSubjectTo

Composition generates

respondsTo

isSubjectTo

Process generates

respondsTo

isSubjectTo

Service

Composition

 generates

respondsTo

isSubjectTo

Service

Contract

 isSubjectTo

Effect isSubjectTo

Service

Interface

 hasInput

hasOutput

 isSubjectTo

Information

Type

isInputAt

isOutputAt

 isSubjectTo

Event isSubjectTo

Policy appliesTo appliesTo appliesTo appliesTo

isSubjectTo

appliesTo

Thing isSubjectTo

Service-Oriented Architecture Ontology 79

Index

appliesTo 47

BPMN 14, 16, 43

car wash example 52

choreography 40

collaboration 40

component 6

composition 37

Composition 37

Composition class..................... 37

composition pattern 39

compositionPattern 38

conformance 4

Constraints 33

does ... 17

doneBy 17

Effect class 28

Element 6

Element class 6

ESB 7, 10, 23

event ... 49

Event ... 49

Event class 49

generatedBy 50

generates 50

hasContract 27

hasInput 35

hasInterface 33

hasOutput 35

HumanActor 14

HumanActor class 14

InformationType class 34

interactionAspect 25

involvesParty 27

isContractFor 27

isInputAt 35

isInterfaceOf 33

isOutputAt 35

isPartyTo 27

isSetBy 47

isSpecifiedBy............................ 29

isSubjectTo 47

legalAspect 25

model-driven SOA 1

ontology applications 4

orchestratedBy 40

orchestrates 40

orchestration 39

OWL..................................... 2, 60

OWL-DL 2

OWL-Full 2

OWL-Lite 2

performedBy 22

performs 22

Policy 45

Policy class 46

populating the ontology.............. 4

process 43, 44

Process 37

process choreography 43

Process class 43

process orchestration 43

representedBy 11, 15, 18, 23

represents 11, 15, 18, 23

respondedToBy 50

respondsTo 50

Service class 21

service composition 42, 44

service consumers 22

service contract 25

service providers 22

ServiceComposition 37

ServiceComposition class 42

ServiceContract class 25

ServiceInterface class 32

service-orientation 1

setsPolicy 47

SLA 26, 30

SOA .. 1

SoaML 9, 20

specifies 29

System .. 6

System class 8

Task .. 14

UML diagrams 2

usedBy 7, 15, 18, 23

uses 7, 15, 18, 23

80 Technical Standard (2010)

	Technical Standard: Service-Oriented Architecture Ontology
	28 Oct 2010 The Open Group (X/Open Company Limited)
	Contents
	Preface
	 Acknowledgements
	Referenced Documents
	1 Introduction
	2 System and Element
	3 HumanActor and Task
	4 Service, ServiceContract, and ServiceInterface
	5 Composition and its Subclasses
	6 Policy
	7 Event
	8 Complete Car Wash Example
	9 Internet Purchase Example
	A The OWL Definition of the Ontology
	B Relationship to Other SOA Standards
	C Class Relationship Matrix
	Index

	
	Open Group Title Page

