
Compositional Specification of Commercial Contracts

Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Simonsen, and Christian
Stefansen

Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, DK-2100 Copenhagen Ø

Denmark

Abstract. We present a declarative language for compositional specification of contracts
governing the exchange of resources. It extends Eber and Peyton Jones’s declarative lan-
guage for specifying financial contracts to the exchange of money, goods and services
amongst multiple parties and complements McCarthy’s Resources/Events/Agents (REA)
accounting model with a view-independent formal contract model that supports defini-
tion of user-defined contracts, automatic monitoring under execution, and user-definable
analysis of their state before, during and after execution. We provide several realistic ex-
amples of commercial contracts and their analysis. A variety of (real) contracts can be
expressed in such a fashion as to support their integration, management and analysis in
an operational environment that registers events.

1 Introduction

When entrepreneurs enter contractual relationships with a large number of other parties, each
with possible variations on standard contracts, they are confronted with the interconnected
problems of specifying contracts, monitoring their execution for performance1, analyzing their
ramifications for planning, pricing and other purposes prior to and during execution, and inte-
grating this information with accounting, workflow management, supply chain management,
production planning, tax reporting, decision support etc.

1.1 Problems with Informal Contract Management

Typical problems that can arise in connection with informal modeling and representation of
contracts and their execution include: (i) disagreement on what a contract actually requires;
(ii) agreement on contract, but disagreement on what events have actually happened (event
history); (iii) agreement on contract and event history, but disagreement on remaining con-
tractual obligations; (iv) breach or malexecution of contract; (v) entering bad or undesirable
contracts/missed opportunities; (vi) bad coordination of contractual obligations with pro-
duction planning and supply chain management; (vii) impossibility, slowness or costliness in
evaluating state of company affairs.

Anecdotal evidence suggests that costs associated with these problems can be consider-
able. Eber estimates that a major French investment bank has costs of about 50 mio. Euro per
year attributable to (i) and (iv) above, with about half due to legal costs in connection with
contract disputes and the other half due to malexecution of financial contracts [Ebe02].

In summary, capturing contractual obligations precisely and managing them conscien-
tiously is important for a company’s planning, evaluation, and reporting to management,
shareholders, tax authorities, regulatory bodies, potential buyers, and others.

We argue that a declarative domain-specific (specification) language (DSL) for compositional
specification of commercial contracts (defining contracts by combining subcontracts in var-
ious, well-defined ways) with an associated precise operational semantics is ideally suited to
alleviating the above problems.

1 Performance in contract lingo refers to compliance with the promises (contractual commitments) stipu-
lated in a contract; nonperformance is also termed breach of contract.

1.2 Contributions

We (i) extend the contract language of Peyton-Jones, Eber and Seward for two-party financial
contracts in a view-independent fashion to multi-party commercial contracts with iteration
and first-order recursion. They involve explicit agents and transfers of arbitrary resources
(money, goods and services, or even pieces of information), not only currencies. Our contract
language is stratified into a pluggable base language for atomic contracts (commitments) and
a combinator language for composing commitments into structured contracts. In addition, we
(ii) provide a natural contract semantics based on an inductive definition for when a trace—a
finite sequence of events—constitutes a successful (“performing”) completion of a contract.
This induces a denotational semantics, which compositionally maps contracts to trace sets as
in Hoare’s Communicating Sequential Processes (CSP). We (iii) systematically develop three
operational semantics in a stepwise fashion, starting from the denotational semantics: A re-
duction semantics with deferred matching of events to specific commitments in a contract;
an eager matching semantics in which events are matched nondeterministically against com-
mitments; and finally an eager matching semantics where an event is equipped with explicit
control information that routes it deterministically to a particular commitment. Finally, we (iv)
validate applicability of our language by encoding a variety of existing contracts in it, and
illustrate analyzability of contracts by providing examples of compositional analysis.

Our work builds on a previous language design by Andersen and Elsborg [AE03] and
is inspired by Peyton Jones and Eber’s compositional specification of financial contracts, the
REA accounting model and CSP-like process algebras. See Section 7 for a comparison with
that work.

2 Modeling Commercial Contracts

A contract is an agreement between two or more parties which creates obligations to do or not
do the specific things that are the subject of that agreement. A commercial contract is a contract
whose subject is the exchange of scarce resources (money, goods, and services). Examples of
commercial contracts are sales orders, service agreements, and rental agreements. Adopting
terminology from the REA accounting model [McC82] we shall also call obligations commit-
ments and parties agents.

2.1 Contract Patterns

In its simplest form a contract commits two contract parties to an exchange of resources such
as goods for money or services for money; that is to a pair of transfers of resources from one
party to the other, where one transfer is in consideration of the other.

The sales order template in Figure 1 commits the two parties (seller , buyer) to a pair
of transfers, of goods from seller to buyer and of money from buyer to seller . Many
commercial contracts are of this simple quid-pro-quo kind, but far from all. Consider the legal
services agreement template in Figure 2. Here commitments for rendering of a monthly legal
service are repeated, and each monthly service consists of a standard service part and an op-
tional service part. More generally, a contract may allow for alternative executions, any one of
which satisfies the given contract.

We can discern the following basic contract patterns for composing commercial contracts
from subcontracts (a subcontract is a contract used as part of another contract):

– a commitment stipulates the transfer of a resource or set of resources between two parties;
it constitues an atomic contract;

– a contract may require sequential execution of subcontracts;
– a contract may require concurrent execution of subcontracts, that is execution of all sub-

contracts, where individual commitments may be interleaved in arbitrary order;

– a contract may require execution of one of a number of alternative subcontracts;
– a contract may require repeated execution of a subcontract.

In the remainder of this paper we shall explore a declarative contract specification language
based on these contract patterns.

Fig. 1 Agreement to Sell Goods
Section 1. (Sale of goods) Seller shall sell and deliver to buyer (description of goods) no later than (date).
Section 2. (Consideration) In consideration hereof, buyer shall pay (amount in dollars) in cash on de-

livery at the place where the goods are received by buyer.
Section 3. (Right of inspection) Buyer shall have the right to inspect the goods on arrival and, within

(days) business days after delivery, buyer must give notice (detailed-claim) to seller of any claim for
damages on goods.

Fig. 2 Agreement to Provide Legal Services
Section 1. The attorney shall provide, on a non-exclusive basis, legal services up to (n) hours per month,

and furthermore provide services in excess of (n) hours upon agreement.
Section 2. In consideration hereof, the company shall pay a monthly fee of (amount in dollars) before

the 8th day of the following month and (rate) per hour for any services in excess of (n) hours 40
days after the receival of an invoice.

Section 3. This contract is valid 1/1-12/31, 2004.

3 Compositional Contract Language

In this section we present a core contract specification language that reflects the contract com-
position patterns of Section 2.1. This is a cursory presentation, with no proofs given. See the
technical report [AEH+04] for a full presentation.

3.1 Syntax

Our contract language CP is defined inductively by the inference system for deriving judge-
ments of the forms Γ ; ∆ ` c : Contract and ∆ ` D : Γ . Here Γ and ∆ range over maps from
identifiers to contract template types and to base types, respectively. The ⊕-operator on maps is
defined as follows:

(m⊕m′)(x) =
{

m′(x) if x ∈ domain(m′)
m(x) otherwise

The language is built on top of a typed base language P defined by ∆ ` a : τ that defines expres-
sions denoting agents, resources, time, other basic types and predicates (Boolean expressions)
over those. P provides the possibility of referring to observables [JES00,JE03]. The language is
parametric in P , and we shall introduce suitable base language expressions on an ad hoc basis
in our examples for illustrative purposes.

The language CP is defined by the inference system in Figure 3. If judgement Γ ; ∆ ` c :
Contract is derivable, we say that c is a well-defined contract given type assumptions Γ and
∆. Success denotes the trivial or (successfully) completed contract: it carries no obligations on

Fig. 3 Syntax for contract specifications

Γ ; ∆ ` Success : Contract Γ ; ∆ ` Failure : Contract

Γ (f) = τ → Contract ∆ ` a : τ

Γ ; ∆ ` f(a) : Contract

∆′ = ∆⊕ {A1 : Agent, A2 : Agent, R : Resource, T : Time}
Γ ; ∆′ ` c : Contract
∆′ ` P : Boolean

Γ ; ∆ ` transmit(A1, A2, R, T | P). c : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1 + c2 : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1 ‖ c2 : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1; c2 : Contract

Γ = {fi 7→ τi1 × . . .× τini → Contract}m
i=1

Γ ; ∆⊕ {Xi1 : τi1, . . . , Xini : τini} ` ci : Contract

∆ ` {fi[Xi] = ci}m
i=1 : Γ

∆ ` {fi[Xi] = ci}m
i=1 : Γ Γ ; ∆ ` c : Contract

∆ ` letrec {fi[Xi] = ci}m
i=1 in c : Contract

anybody. Failure denotes the inconsistent or failed contract; it signifies breach of contract or a
contract that is impossible to fulfill. The environment D = {fi[Xi] = ci}m

i=1 contains named
contract templates. A contract template needs to be instantiated with actual arguments from
the base language. The contract expression transmit(A1, A2, R, T | P). c represents a contract
where the commitment transmit(A1, A2, R, T | P) must be satisfied first. Note that A1, A2, R, T
are binding variable occurrences whose scope is P and c. The commitment must be matched
by a (transfer) event e = transmit(a1, a2, r, t) of resource r from agent a1 to agent a2 at time
t where P (a1, a2, r, t) holds. After matching, the residual contract is c in which A1, A2, R, T
are bound to a1, a2, r, t, respectively. In this fashion, the subsequent contractual obligations
expressed by c may depend on the actual values in event e. The contract combinators ·+ ·, · ‖ ·
and ·; · compose subcontracts according to the contract patterns we have discerned: by alter-
nation, concurrently, and sequentially, respectively. A contract consists of a finite set of named
contract templates and a contract body. Note that contract templates may be (mutually) re-
cursive, which, in particular, lets us capture repetition of subcontracts. In the following we
shall adopt the convention that A1, A2, R, T must not be bound in environment ∆. If a vari-
able from ∆ or any expression a only involving variables bound in ∆ occurs as an argument
of a transmit, we interpret this as an abbreviation; e.g., transmit((a,A2, R, T | P)). c abbre-
viates transmit((A1, A2, R, T | P ∧A1 = a)). c where A1 is a new (agent-typed) variable not
bound in ∆ and different from A2, R and T . We abbreviate transmit(A1, A2, R, T | P). Success
to transmit(A1, A2, R, T | P). Examples encoding the contracts from Figures 1 and 2 are pre-
sented in Section 4.

3.2 Event Traces and Contract Satisfaction

A contract specifies a set of alternative performing event sequences (contract executions), each
of which satisfies the obligations expressed in the contract and concludes it. In this section we
make these notions precise for our language.

A base structure is a tuple (R, T ,A) of sets of resources R, agents A and a totally ordered
set (T ,≤T) of dates (or time points), plus other sets for other types, as needed. A (transfer) event
e is a term transmit(a1, a2, r, t), where a1, a2 ∈ A, r ∈ R and t ∈ T . An (event) trace s is a finite
sequence of events that is chronologically ordered; that is, for s = e1 . . . en the time points
in e1 . . . en occur in ascending order. We adopt the following notation: 〈〉 denotes the empty
sequence; a trace consisting of a single event e is denoted by e itself; concatenation of traces

s1 and s2 is denoted by juxtaposition: s1s2; we write (s1, s2) Ã s if s is an interleaving of the
events in traces s1 and s2; we write X for the vector X1, . . . , Xk with k ≥ 0 and where k can be
deduced from the context; we write P [a1/A1, a2/A2, r/R, t/T] and c[a1/A1, a2/A2, r/R, t/T]
for substitution of expressions a1, a2, r, t for free variables A1, A2, R, T in Boolean expression
P and contract expression c, respectively.2 We are now ready to specify when a trace satisfies
a contract, i.e. gives rise to a performing execution of the contract. This is done inductively
by the inference system for judgements s `δ

D c in Figure 4, where D = {fi[Xi] = ci}m
i=1 is a

finite set of named contract templates and δ is a finite set of bindings of variables to elements
of the given base structure. A derivable judgement s `δ

D c expresses that event sequence s
satisfies—successfully executes and concludes—contract c in an environment where contract
templates are defined as in D and δ specifies to which values the base variables in c and D
are bound. Conversely, if s `δ

D c is not derivable then s does not satisfy c. The premise δ |=
P [a1/A1, a2/A2, r/R, t/T] in the 3d rule stipulates that P [a1/A1, a2/A2, r/R, t/T], with free
variables bound as in δ, must be true for an event to match the corresponding commitment.

Fig. 4 Contract satisfaction

〈〉 `δ
D Success

s `δ
D c[a/X] (f [X] = c) ∈ D

s `δ
D f(a)

δ |= P [a1/A1, a2/A2, r/R, t/T] s `δ
D c[a1/A1, a2/A2, r/R, t/T]

transmit(a1, a2, r, t) s `δ
D transmit((A1, A2, R, T |P)). c

s1 `δ
D c1 s2 `δ

D c2 (s1, s2) Ã s

s `δ
D c1 ‖ c2

s1 `δ
D c1 s2 `δ

D c2

s1s2 `δ
D c1; c2

s `δ
D c

s `δ letrec D in c

s `δ
D c1

s `δ
D c1 + c2

s `δ
D c2

s `δ
D c1 + c2

3.3 Contract Monitoring by Residuation

Extensionally, contracts classify traces (event sequences) into performing and nonperforming
ones. We define the extension of a contract c to be the set of its performing executions: C[[c]]D;δ =
{s : s `δ

D c}. We say c denotes a trace set S in context D, δ, if C[[c]]D;δ = S.3

We are not only interested in classifying complete event sequences once they have hap-
pened, though, but in monitoring contract execution as it unfolds in time under the arrival of
events.

Given a trace set S denoted by a contract c and an event e, the residuation function ·/·
captures how c can be satisfied if the first event is e. It is defined as follows:

S/e = {s′ | ∃s ∈ S : es′ = s}
Conceptually, we can map contracts to trace sets and use the residuation function to mon-

itor contract execution as follows:
2 We have not specified a particular language of Boolean expressions; we only require that it has a

well-defined notion of substitution.
3 A variant of C[[c]]D;δ can be characterized compositionally, yielding a denotational semantics; see

[AEH+04].

1. Map a given contract c0 to the trace set S0 that it denotes. If S0 = ∅, stop and output
“inconsistent”.

2. For i = 0, 1, . . . do:
Receive message ei.
(a) If ei is a transfer event, compute Si+1 = Si/ei. If Si+1 = ∅, stop and output “breach of

contract”; otherwise continue.
(b) If ei is a “terminate contract” message, check whether 〈〉 ∈ Si. If so, all obligations

have been fulfilled and the contract can be terminated. Stop and output “successfully
completed”. If 〈〉 6∈ Si, output “cannot be terminated now”, let Si+1 = Si and continue
to receive messages.

To make the conceptual algorithm for contract life cycle monitoring from Section 3.3 op-
erational, we need to represent the residual trace sets and provide methods for deciding tests
for emptiness and failure. In particular, we would like to use contracts as representations for
trace sets. Not all trace sets are denotable by contracts, however. In particular, given a contract
c that denotes a trace set Sc it is not a priori clear whether Sc/e is denotable by a contract c′. If
it is, we call c′ the residual contract of c after e.

3.4 Nullable and Guarded Contracts

In this section we characterize nullability of a contract and introduce guarding, which is a suf-
ficient condition on contracts for ensuring that residuation can be performed by reduction on
contracts.

Fig. 5 Nullable contracts

D ` c nullable (f [X] = c) ∈ D

D ` f(a) nullable
D ` c nullable

D ` c + c′ nullable

D ` c′ nullable

D ` c + c′ nullable

D ` Success nullable D ` c nullable D ` c′ nullable

D ` c ‖ c′ nullable

D ` c nullable D ` c′ nullable

D ` c; c′ nullable

Let us write D |= c nullable if 〈〉 ∈ C[[c]]D;δ for all δ. We call such a contract nullable (or
terminable): it can be concluded successfully, but may possibly also be continued. E.g., the
contract Success + transmit(a1, a2, r, t|P) is nullable, as it may be concluded successfully (left
choice). Note however, that it may also be continued (right choice). It is easy to see that nulla-
bility is independent of δ: 〈〉 ∈ C[[c]]D;δ for some δ if and only if 〈〉 ∈ C[[c]]D;δ′ for any other δ′.
Deciding nullability is required to implement Step 2b in contract monitoring. The following
proposition expresses that nullability is characterized by the inference system in Figure 5.

Proposition 1. D |= c nullable ⇐⇒ D ` c nullable

A contract c is (hereditarily) guarded in context D if D ` c guarded is derivable from Figure 6;
intuitively, guardedness ensures that in a contract with mutual recursion, we do not have
(mutual) recursions such as {f [X] = g[X], g[X] = f [X]} that cause the residuation algorithm
to loop infinitely.

3.5 Operational Semantics I: Deferred Matching

Residuation on trace sets tells us how to maintain the trace set under arrival of events. In this
section we present a reduction semantics for contracts, which lifts residuation on trace sets to
contracts and thus provides a monitoring semantics for contract execution.

Fig. 6 Guarded contracts

D ` Success guarded D ` Failure guarded

D ` transmit(X | P). c guarded
D ` c guarded (f [X] = c) ∈ D

D ` f(a) guarded

D ` c guarded D ` c′ guarded

D ` c + c′ guarded

D ` c guarded D ` c′ guarded

D ` c ‖ c′ guarded

D ` c guarded D ` c′ guarded

D ` c; c′ guarded

Fig. 7 Deterministic reduction (delayed matching)

D, δ `D Success
e−→ Failure D, δ `D Failure

e−→ Failure

δ |= P [a/X]

D, δ `D transmit(X|P). c
transmit(a)−→ c[a/X]

δ 6 |=P [a/X]

D, δ `D transmit(X|P). c
transmit(a)−→ Failure

D, δ `D c[a/X]
e−→ c′ (f [X] = c) ∈ D

D, δ `D f(a)
e−→ c′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c + c′
e−→ d + d′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c ‖ c′
e−→ c ‖ d′ + d ‖ c′

D ` c nullable D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c; c′
e−→ d; c′ + d′

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′
e−→ d; c′

D, δ `D c
e−→ c′

δ `D letrecD in c
e−→ letrecD in c′

The ability of representing residual contract obligations of a partially executed contract
and thus any state of a contract as a bona fide contract carries the advantage that any analysis
that is performed on “original” contracts automatically extends to partially executed contracts
as well. E.g., an investment bank that applies valuations to financial contracts before offering
them to customers can apply their valuations to their portfolio of contracts under execution;
e.g., to analyze its risk exposure under current market conditions.

The reduction semantics is presented in Figure 7. The basic matching rule is

δ |= P [a/X]

D, δ `D transmit(X|P). c
transmit(a)−→ c[a/X]

.

It matches an event with a specific commitment in a contract. There may be multiple com-
mitments in a contract that match the same event. The semantics captures the possibilities of
matching an event against multiple commitments by applying all possible reductions in alter-
natives and concurrent contract forms and forming the sum of their possible outcomes (some
of which may actually be Failure).

The rule
D, δ `D c

e−→ d D, δ `D c′ e−→ d′

D, δ `D c + c′ e−→ d + d′

thus reduces both alternatives c and c′ and then forms the sum of their respective results d, d′.

Finally, the rule

D ` c nullable D, δ `D c
e−→ d D, δ `D c′ e−→ d′

D, δ `D c; c′ e−→ d; c′ + d′

captures that e can be matched in c or, if c is nullable, in c′. Note that, if c is not nullable, e can
only be matched in c, not c′, as expressed by the rule

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′ e−→ d; c′
.

In this fashion the semantics keeps track of the results of all possible matches in a reduc-
tion sequence as explicit alternatives (summands) and defers the decision as to which specific
commitment is matched by a particular event during contract exectution until the very end:
By selecting a particular summand in a residual contract after a number of reduction steps
that represents Success (and the contract is thus terminable) a particular set of matching deci-
sions is chosen ex post. As presented, the reduction semantics gives rise to an implementation
in which the multiple reducts of previous reduction steps are reduced in parallel, since they
are represented as summands in a single contract, and the rule for reduction of sums reduces
both summands. It is relatively straightforward to turn this into a backtracking semantics by
an asymmetric reduction rule for sums, which delays reduction of the right summand.

Guardedness is key to ensuring termination of contract residuation and thus that every
(guarded) contract has a residual contract under any event in the reduction semantics of Fig-
ure 7.

Theorem 1. If c ∈ CP is guarded then for each event e there exists a unique c′ ∈ CP such that
D, δ `D c

e−→ c′. Furthermore, we have that c′ is guarded and D, δ |= c/e = c′, which means
C[[c]]D;δ/e = C[[c′]]D;δ .

Using this reduction semantics we can turn our conceptual contract monitoring algorithm
into a real algorithm.

Proposition 1 provides a syntactic characterization of nullability, which can easily (not
trivially) be turned into an algorithm. Inconsistency—whether a contract denotes the empty
trace set or not—is not treated here; see the full report [AEH+04].

3.6 Operational Semantics II: Eager Matching

The deferred matching semantics of Figure 7 is flexible and faithful to the natural notion of
contract satisfaction as defined in Figure 4. But from an accounting practice point of view it
is weird because matching decisions are deferred. In bookkeeping standard modus operandi is
that events are matched against specific commitments eagerly; that is online, as events arrive.4

We shall turn the deferred matching semantics of Figure 7 into an eager matching se-
mantics (Figure 8). The idea is simple: Represent here-and-now choices as alternative rules
(meta-level) as opposed to alternative contracts (object level). Specifically, we split the rules
for reducing alternatives and concurrent subcontracts into multiple rules, and we capture
the possibility of reducing in the second component of a sequential contract by adding τ -
transitions, which “spontaneously” (without a driving external event) reduce a contract of
the form Success; c to c. For this to be sufficient we have to make sure that a nullable contract
indeed can be reduced to Success, not just a contract that is equivalent with Success, such as
Success ‖ Success. This is done by ensuring that τ -transitions are strong enough to guarantee
reduction to Success as required.

4 There are standard accounting practices for changing such decisions, but both default and standard
conceptual model are that matching decisions are made as early as possible. In general, it seems
representing and deferring choices and applying hypothetical reasoning to them appears to be a rather
unusual phenomenon in accounting.

Fig. 8 Nondeterministic reduction (eager matching)

D, δ `N Success
e−→ Failure D, δ `N Failure

e−→ Failure

δ |= P [a/X]

D, δ `N transmit(X | P). c
transmit(a)−→ c[a/X]

δ 6 |=P [a/X]

D, δ `N transmit(X|P). c
transmit(a)−→ Failure

(f [X] = c) ∈ D

D, δ `N f(a)
τ−→ c[a/X]

D, δ `N c + c′
τ−→ c D, δ `N c + c′

τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c ‖ c′
λ−→ d ‖ c′

D, δ `N c′
λ−→ d′

D, δ `N c ‖ c′
λ−→ c ‖ d′

D, δ `N Success ‖ c
τ−→ c D, δ `N c ‖ Success

τ−→ c D, δ `N Success; c′
τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c; c′
λ−→ d; c′

D, δ `N c
e−→ c′

δ `N letrecD in c
e−→ letrecD in c′

Based on these considerations we arrive at the reduction semantics in Figure 8, where
meta-variable λ ranges over events e and the internal event τ . Note that it is nondeterministic
and not even confluent: A contract c can be reduced to two different contracts by the same
event. Consider e.g., c = a; b + a; b′ where a, b, b′ are commitments with suitable D, δ, no
two of which match the same event. For event e matching a we have D, δ `N c

e−→ b and
D, δ `N c

e−→ b′, but neither b nor b′ can be reduced to Success or any other contract by the
same event sequence. In reducing c we have not only resolved it against e, but also made
a decision: whether to apply it to the first alternative of c or to the second. Technically, the
reduction semantics is not closed under residuation: Given c and e it is not always possible to
find c′ such that D, δ `N c

e−→ c′ and D; δ |= c/e = c′. It is sound, however, in the sense that
the reduct always denotes a subset of the residual trace set:

Proposition 2. 1. If D, δ `N c
e−→ c′ then D, δ |= c′ ⊆ c/e.

2. If D, δ `N c
τ−→ c′ then D, δ |= c′ ⊆ c.

Even though individual eager reductions do not preserve residuation, the set of all reduc-
tions does so:

Proposition 3. If D, δ `D c
e−→ c′ then there exist contracts c1, . . . , cn for some n ≥ 1 such that

D, δ `N c
τ∗−→ c′′i

e−→ ci for all i = 1 . . . n and D, δ |= c′ ⊆ ∑n
i=1 ci. The notation · τ∗−→ · indicates

any number ≥ 0 of τ -transitions.

As a corollary, Propositions 2 and 3 combined yield that the object-level nondeterminism
(expressed as contract alternatives) in the deferred matching semantics is faithfully reflected
in the meta-level nondeterminism (expressed as multiple applicable rules) of the eager match-
ing semantics.

3.7 Operational Semantics III: Eager Matching with Explicit Routing

Consider the following execution model for contracts: Two or more parties each have a copy
of the contract they have previously agreed upon and monitor its execution under the arrival
of events. Even though they agree on prior contract state and the next event, the parties may

arrive at different residual contracts and thus different expectations as to the future events al-
lowed under the contract. This is because of nondeterminacy in contract execution with eager
matching; e.g., a payment of $50 may match multiple payment commitments, and the par-
ties may make different matches. We can remedy this by making control of contract reduction
with eager matching explicit in order to make reduction deterministic: events are accompa-
nied by control information that unambiguously prescribes how a contract is to be reduced.
In this fashion parties that agree on what events have happened and on their associated con-
trol information, will reduce their contract identically. See the full technical report for details
[AEH+04].

4 Example Contracts

For the purpose of demonstration we will afford ourselves a fairly advanced predicate lan-
guage with basic arithmetic, logical connectives, lists and basic functions. The syntax is stan-
dard and straightforward, and the details will be obvious from the examples.

Consider the validity period specified in Section 3 of the Agreement to Provide Legal Ser-
vices (Figure 2). Taken literally, it would imply, that the attorney shall render services in the
month of December, but receive no fee in consideration since January 2005 is outside the va-
lidity period. Surely, this is not the intention; in fact, consideration will defeat most deadlines
as is clearly the intent here. In the coding of the Agreement to Provide Legal Services the ex-
piration date end has to be pushed down on all transmits despite its global nature to make
sure that consideration would not be cut off.

The Agreement to Provide Legal Services fails to specify who decides if legal services
should be rendered. In the coding it is simply assumed that the attorney is the initiator and
that all services rendered over a month can be modelled as one event. Furthermore, the attor-
ney is assumed to give the notice nowork if no work was done for the past month. This is an
artifact introduced to guard the recursive call to legal .

Fig. 9 Software Development Agreement
Section 1. The Developer shall develop software as described in Exhibit A (Requirements Specification)

according the schedule set forth in Exhibit B (Project Schedule and Deliverables). Specifically, the
Developer shall be responsible for the timely completion of the deliverables identified in Exhibit B.

Section 2. The Client shall provide written approval upon the completion of each deliverable identified
in Exhibit B.

Section 3. In the event of any delay by the Client, all the Developer’s remaining deadlines shall be
extended by the greater of the two following: (i) five working days, (ii) two times the delay induced
by the Client. The Client’s deadlines shall be unchanged.

Section 4. In consideration of services rendered the Client shall pay USD $100.000 due on 7/1.
Section 5. If the Client wishes to add to the order, or if upon written approval of a deliverable, the

Client wishes to make modifications to the deliverable, the Client and the Developer shall enter into
a Change Order. Upon mutual agreement the Change Order shall be attached to this contract.

Section 6. The Developer shall retain all intellectual rights associated with the software developed. The
Client may not copy or transfer the software to any third party without the explicit, written consent
of the Developer.

Exhibit A. (omitted)
Exhibit B. Deadlines for deliverables and approval: (i) 1/1, 1/15; (ii) 3/1, 3/15, (final deadline) 7/1,

7/15.

Now consider the more elaborate Software Development Agreement in Figure 9. When
coding the contract, one notices that the contract fails to specify the ramifications of the client’s

Fig. 10 Specification of Software Development Agreement – note that we assume (easily de-
fined) abbreviations for max(x,y) and allow subtraction on the domain Time.
letrec

deliverables (dev, client, payment, deliv1, deadline1, approv1,
deliv2, deadline2, approv2,
delivf, deadlinef, approvf) =

transmit(dev, client, deliv1, T1 | T1 <= deadline1)).
transmit(client, dev, "ok", T).
transmit(dev, client, deliv2, T2 |

T2 <= deadline2 + max(5d, (T - approv1) * 2)).
transmit(client, dev, "ok", T).
transmit(dev, client, delivf, Tf |

Tf <= deadlinef + max(5d, (T - approv2) * 2)).
transmit(client, dev, "ok", T).
transmit(dev, client, "done", T).
Success

software (dev, client, payment, paymentdeadline, ds) =
deliverables (dev, client, deliv1, deadline1, approv1,

deliv2, deadline2, approv2,
delivf, deadlinef, approvf) ||

transmit(client, dev, payment, T | T <= paymentdeadline)
in

software ("Me", "Client", 100000, 2004.7.1, d1, 2004.1.1, 2004.1.15,
d2, 2004.3.1, 2004.3.15, final, 2004.7.1, 2004.7.15)

non-approval of a deliverable. One also sees that the contract does not specify what to do if
due to delay, some approval deadline comes before the postponed delivery date. In the current
code, this is taken to mean further delay on the client’s part even if the client gave approval
at the same time as the deliverable was transmitted. It seems that contract coding is a healthy
process in the sense that it will often unveil underspecification and errors in the natural lan-
guage contract being coded. The Change Order described in Section 5 of the contract and
the intellectual rights described in Section 6 are not coded due to certain limitations in our
language. We will postpone the discussion of this this paper’s Section 6.

5 Contract Analysis

The formal groundwork in order, we can begin to ask ourselves questions about contracts such
as: What is my first order of business? When is the next deadline? How much of a particular
resource will I gain from my portfolio and at what times? What is the monetary value of my
portfolio? Will contract fulfillment require more than the x units I currently have in stock?

The attempt to answer such questions is broadly referred to as contract analysis. The resid-
uation property allows a contract analysis to be applied at any time (i.e. to any residual con-
tract), and we can thus continuously monitor the execution of the contracts in our portfolio.

Recall that our contract specification language is parameterized over the language of pred-
icates and arithmetic. There is a clear trade-off in play here: a sophisticated language buys
expressiveness, but renders most of the analyses undecidable.

There is another source of difficulties. Variables may be bound to components of an event
that is unknown at the time of analysis. An expression like transmit(a1, a2, R, T |true). offers
little insight into the nature of R unless furnished with a probability vector over all resources.

Here we will circumvent these problems by making do with a restricted predicate lan-
guage and accepting that analyses may not give answers on all input (but will give correct
answers).

The predicate language is plugged in at two locations. In function application f(a) where
all components of the vector a must checked according to the rules of the predicate language,
and in transmit(a1, a2, r, t|P) where P must have the type Boolean. As previously we require
that a1, a2, r, and t are either variables (bound or unbound) or constants. If some components
are bound variables or constants, they must be equal to the corresponding components of an
incoming event (a′1, a

′
2, r

′, t′) for a match to occur.
Consider the syntax provided in figure 11. In addition to the types Agent, Resource, and

Time, the language has the fundamental types Int and Boolean. Take τ to range over {Int, Time},
take σ to range over τ ∪ {Agent, Resource}, and assume that constants can be uniquely typed
(e.g. time constants are in ISO format, and agent and resource constants are known).

The language allows arithmetic on integers, simple propositional logic, and manipulation
of the two abstract types Resource and Time. Given a time (date) t we may add an integral
number of years, months or days. For example 2004.1.1 + 3d + 1y yields 2005.1.4. Resources
permit a projection on a named component (field) and all fields are of type Int. E.g. to extract
the total amount from an information resource named invoice we write #(invoice, total, t)
where t is some date5. The fields of resources may change over time; hence the third Time
parameter.

Observables can now be understood simply as fields of a ubiquitous resource named obs .
An Int may double for a Resource in which case the Int is understood to be a currency amount.

Fig. 11 Example syntax for predicate language

∆ ` ∆(var) = σ

∆ ` var : σ

∆ ` type(const) = σ

∆ ` const : σ

∆ ` e1 : Int ∆ ` e2 : Int op ∈ {+,−, ∗, /}
∆ ` e1 op e2 : Int

∆ ` t : Time ∆ ` e : Int f ∈ {y, m, d} op ∈ {+,−}
∆ ` t op e f : Time

∆ ` e : Time f ∈ {y, m, d}
∆ ` e#f : Int

∆ ` r : Resource ∆ ` t : Time f ∈ fields(r)

∆ ` #(r, f, t) : Int
∆ ` e : Int

∆ ` e : Resource

∆ ` e1 : τ ∆ ` e2 : τ

∆ ` e1 < e2 : Boolean

∆ ` e1 : σ ∆ ` e2 : σ

∆ ` e1 = e2 : Boolean

∆ ` b1 : Boolean ∆ ` b2 : Boolean op ∈ {and, or}
∆ ` b1 op b2 : Boolean

∆ ` b : Boolean
∆ ` not b : Boolean

Ideally, a contract analysis can be performed compositionally, i.e. can be implemented by re-
cursively evaluating subcontracts. This section contains a simple analysis with this property.
Space considerations prevent a walkthrough of more involved examples, but the basic idea
should be clear. We will assume for simplicity that recursively defined contracts are guarded.
The analyses are presented using inference systems defined by induction on syntax, empha-
sizing the declarative and compositional nature of the analyses.

5 When a resource is introduced into the system through a match, it must be dynamically checked that
it possesses the required fields. The set of required fields can be statically determined by a routine
type check annotating resources with field names à la {date, total, paymentdeadline}Resource. To
keep things simple we omit this type extension here.

5.1 Example: Next Point of Interest and Task List

Given a contract or a portfolio of contracts it is tremendously important for an agent to know
when and how to act. To this end we demonstrate how a very simple task list can be compiled.

Consider the definition given in Figure 12. The function gives a structured response to
reflect the decision structure (the task list) of the contract. It operates on a very simple subset
of the predicate language that, however, is indicative of the bulk of temporal constraints in
contracts: only interval conditions of the form a ≤ TandT ≤ b with T the time variable in
the enclosing transmit commitment are admitted. Such a condition is abbreviated to [a; b]. It is
important to notice that the result of the analysis may be incomplete. A task is only added if
the agents agree (i.e. a = a1), but if a1 is not bound at the time of analysis, the task is simply
skipped. A more elaborate dataflow analysis might reveal that in fact a1 is always bound to
a.

Also notice the case for application f(a). We expand the body of the named contract f
given arguments a but only once. This measure ensures termination of the analysis, but re-
duces the function’s look-ahead horizon. Hence, any task or point of interest more than one
recursive unfolding away is not detected. This is unlikely to have practical significance for two
reasons: (1) recursively defined contracts are guarded and so a transmit must be matched
before a new unfold can occur. This transmit therefore is presumably more relevant than
any other transmits further down the line; (2) it would be grossly unidiomatic that some
transmit t1 was required to be matched before another transmit t2, but nevertheless had
a later deadline than that of t2.

Fig. 12 Task list analysis

D, δ, a, t ` Success : [] D, δ, a, t ` Failure : []

|= a 6= a1 X = (a1, A, R, T)

D, δ, a, t ` transmit(X | [x; y]). c : do []

|= t /∈ [x; y]

D, δ, a, t ` transmit(X | [x; y]). c : do []

|= a = a1 X = (a1, A, R, T) t ∈ [x; y]

D, δ, a, t ` transmit(X | [x; y]) : do [transmit(X | [x; y])]

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2

D, δ, a, t ` c1 + c2 : choose[l1, l2]

D ` c1 nullable D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2

D, δ, a, t ` c1; c2 : choose[l1, l2]

D 6` c1 nullable D, δ, a, t ` c1 : l1
D, δ, a, t ` c1; c2 : l1

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2

D, δ, a, t ` c1 ‖ c2 : l1 @ l2

(f [X] = c) ∈ D D, δ, a, t ` c : l

D, δ, a, t ` f(a) : l

The examples given above, in their simplicity, may be extended given knowledge of the
problem domain. In particular, knowledge of or forecasting about probable event sequences
may be used in a manner “orthogonal” to the coding of analyses by appropriate function calls.

Analyses that are possible to implement in this way include resource flow forecasting (sup-
ply requirements); terminability by agent; latest termination; earliest termination; and valua-
tion, or simply put: What is the value to an agent of a given contract?

6 Discussion and Future Work

The Software Development Agreement (Figure 9) provides a good setting to observe the lim-
itations to our approach and the ramifications of the design choices made.

The Change Order is not coded. It might be cleverly coded in the current language, again
using constraints on the events passed around, but a more natural way would be using higher-
order contracts, i.e. contracts taking contracts as arguments. Thus, a Change Order would
simply be the passing back and forth of a contract followed by an instantiation upon agree-
ment.

Contracts often specify certain things that are not to be done (e.g. not copying the soft-
ware). Such restrictions should intersect all other outstanding contracts and limit them appro-
priately. A higher-order language or predicates that could guard all transmit s of an entire
subcontract might ameliorate this in a natural way.

A fuller range of language constructions that programmers are familiar with is also desir-
able; in the present incarnation of the contract language, several standard constructions have
been left out in order to emphasize the core event model. In practice, conditionals and various
sorts of lambda abstractions would make the language easier to use, though not strictly more
expressive, as they can be encoded through events, albeit in a non-intuitive way. A condi-
tional that is not driven by events (i.e. an if-then-else) seems to be needed for natural coding
in many real-world contracts. Also, a catch-throw mechanism for unexpected events would
make contracts more robust.

Conversely, certain features of the language appear to be almost too strong for the domain;
the inclusion of full recursion means that contracts active for an unlimited period of time, say
leases, are easy to code, but make contract analysis significantly harder. In practice, contracts
running for “unlimited” time periods often have external constraints (usually local legislation)
forcing the contract to be reassessed by its parties, and possibly government representatives,
from time to time. Having only a restricted form of recursion that suffices for most practical
applications should simplify contract analysis.

The expressivity of the contract language and indeed the feasibility of non-trivial contract
analysis depends heavily on the predicate language used. Predicates restricted to the form
[a; b] are surely too limited, and further investigation into the required expressiveness of the
predicate language is desirable.

While the language is parametrized over the predicate language used, almost all real-
world applications will require some model of time and timed events to be incorporated. The
current event model allows for encoding through the predicate language, but an extended set
of events, with companion semantics, would make for easier contract programming; timer (or
“trigger”) events appear to be ubiquitous when encoding contracts.

7 Related Work

The impetus for this work comes from two directions: the REA accounting model pioneered
by McCarthy [McC82] and Peyton Jones, Eber and Seward’s seminal article on specification
of financial contracts [JES00]. Furthermore, given that contracts specify protocols as to how
parties bound by them are to interact with each other there are links to process and workflow
models.

Peyton Jones, Eber and Seward [JES00] present a compositional language for specifying
financial contracts. It provides a decomposition of known standard contracts such as zero
coupon bonds, options, swaps, straddles, etc., into individual payment commitments that
are combined declaratively using a small set of contract combinators. All contracts are two-
party contracts, and the parties are implicit. The combinators (taken from [JE03], revised from
[JES00]) correspond to Success, · ‖ ·, · + ·, transmit(·) of our language CP ; it has no direct
counterparts to Failure, ·; · nor, most importantly, recursion or iteration. On the other hand, it

provides conditionals and predicates that are applicable to arbitrary contracts, not just com-
mitments as in CP , something we have found to be worthwhile also for specifying commercial
contracts.

Our contract language generalizes financial payment commitments to arbitrary transfers
of resources and information, provides explicit agents and thus provides the possibility of
specifying multi-party contracts.

Disregarding the structure of events and their temporal properties, CP is basically a pro-
cess algebra. It corresponds to Algebra of Communicating Processes (ACP) with deadlock
(Failure), free merge (· ‖ ·) and recursion, but without encapsulation [BW90]. This process
algebra is also part of CSP [BHR84,Hoa85]. Note that contracts are to be thought as exclu-
sively reactive processes, however: they respond to externally generated events, but do not
autonomously generate them.

There are numerous timed variants of process algebras and temporal logics; see e.g. Baeten
and Middelburg [BM02] for timed process algebras. Their relation to our base language is not
evident at this point. This is in part because our base language is not fixed yet to accommodate
expressing temporal (and other) constraints “naturally,” in part because the temporal notions
of timed process languages seem rather low-level and distinct from the notions we have used
in contract examples.

8 Acknowledgements

This work has been partially funded by the NEXT Project, which is a collaboration between
Microsoft Business Solutions, The IT University of Copenhagen and the Department of Com-
puter Science at the University of Copenhagen (DIKU). See http://www.itu.dk/next for
more information on NEXT.

We would like to thank Simon Peyton Jones, Jean-Marc Eber, Kasper Østerbye, and Jesper
Kiehn for valuable discussions on modeling financial contracts and extending that work to
commercial contracts based on the REA accounting model.

References

[AE03] Jesper Andersen and Ebbe Elsborg. Compositional specification of commercial contracts. M.S.
term project, December 2003.

[AEH+04] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Simonsen, and Christian Ste-
fansen. Compositional specification of commercial contracts. Technical report, DIKU, Uni-
versity of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark, July 2004.
http://topps.diku.dk/next/contracts.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560–599, 1984.

[BM02] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.
[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge Tracts in Theoret-

ical Computer Science. Cambridge University Press, 1990.
[Ebe02] Jean-Marc Eber. Personal communication, June 2002.
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International Series in Computer Science.

Prentice-Hall, 1985.
[JE03] Simon Peyton Jones and Jean-Marc Eber. How to write a financial contract. In Jeremy Gibbons

and Oege de Moor, editors, The Fun of Programming. Palgrave Macmillan, 2003.
[JES00] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an adventure

in financial engineering (functional pearl). In Proceedings of the fifth ACM SIGPLAN interna-
tional conference on Functional programming, pages 280–292. ACM Press, 2000.

[McC82] William E. McCarthy. The REA accounting model: A generalized framework for accounting
systems in a shared data environment. The Accounting Review, LVII(3):554–578, July 1982.

