The Timeless Way of Building REA Enterprise Systems
Geerts, Guido L;Wang, Harry Jiannan

Journal of Emerging Technologies in Accounting; 2007; 4, ProQuest
pg. 161

JOURNAL OF EMERGING TECHNOLOGIES IN ACCOUNTING
Vol. 4

2007

pp. 161-182

The Timeless Way of Building REA
Enterprise Systems

Guido L. Geerts
University of Delaware

Harry Jiannan Wang
University of Delaware

ABSTRACT: In a continuously changing business environment, the need for enterprise
systems that are more adaptable has been recognized by many. Several solutions are
being suggested to improve the adaptability of enterprise systems, including service-
oriented architectures, model-driven architectures, and reflective architectures. In this
paper, we propose a timeless way of building enterprise systems that employs a re-
flective architecture with integrated Resource-Event-Agent (REA) enterprise ontology
specifications. We show how the explicit recording of enterprise schema descriptions
results in enterprise systems with increased adaptability. In addition, we demonstrate
how explicitly recorded ontological specifications can further increase application reus-
ability. We validate our research with a prototype system.

Keywords: adaptability; enterprise systems; REA enterprise ontology; reflective system
architectures; reusability.

INTRODUCTION

n a continuously changing business environment, the need for enterprise systems that
Iare more adaptable has been recognized by many. Several solutions are being suggested

to improve the adaptability of software systems. For example, service-oriented archi-
tectures enable organizations to transform their business processes into a set of automated
business services with standard interfaces, resulting in more adaptive enterprise systems
(Zhao et al. 2007). Model-driven architectures define an enterprise model at a high level
of abstraction, and this is then transformed into models at progressively lower levels of
abstractions until source code is generated (Frankel 2003; Kleppe et al. 2003). Changes in
business practices are accommodated by enterprise model updates that are then automati-
cally propagated into software code. Reflective systems record enterprise schema descrip-
tions explicitly so that they can be manipulated at run time.

This paper explores the design of reflective systems where the explicitly recorded en-
terprise schema descriptions are further defined in terms of a domain ontology. The ontology
chosen is the Resource-Event-Agent Enterprise Ontology or REA-EO (McCarthy 1982;

We acknowledge the helpful comments of Bob Haugen, Pavel Hruby, Mette Jaquet, Jesper Kiehn, Wim Laurier,
the editor, three anonymous reviewers, and the participants of the OOPSLA’97 Business Object Workshop and the
Fifteenth Annual Research Workshop on AI/ET in Accounting, Auditing, and Tax.

Corresponding author: Guido L. Geerts
Email: geertsg@lerner.udel.edu

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162 Geerts and Wang

Geerts and McCarthy 2004). The REA-EO is strongly rooted in accounting and economic
theory and addresses the issue of what phenomena should be captured in an enterprise
system. In addition, it provides structuring guidelines about the way economic phenomena
should be assembled into business process and value chain specifications (Geerts and
McCarthy 2001). The explicit recording of the semantics provided by the REA-EO enables
increased reusability at the application level.

The architecture of a timeless REA enterprise system is illustrated in Exhibit 1. We
follow Fowler (1997) in using the terms operational and knowledge level. An enterprise
schema (operational level) describes the actual economic phenomena occurring in a com-
pany, such as information regarding a specific customer. Knowledge-level specifications,
on the other hand, describe the economic phenomena represented in the enterprise system.
For example, a definition of the characteristics of customers would represent metadata. Data
dictionaries are primitive examples of metadata descriptions. The architecture in Exhibit 1
further differentiates between “‘enterprise schema descriptions” and ‘“‘ontological specifi-
cations.” Enterprise schema descriptions define the specific phenomena that occur in a
company, such as the existence of customers and the characteristics to be communicated
regarding customers. The ontological specifications, on the other hand, provide domain-
specific definitions that are more general in nature. For example, customers would be clas-
sified as being of the REA-EO type agent. Applications have access to both operational-
and knowledge-level specifications.

The objective of this paper is to explore how the architecture in Exhibit 1 can result
in systems that are more adaptable and how it enables the engineering of applications that

EXHIBIT 1
Architecture for Timeless REA Enterprise Systems

5\\: RS

Salwrprse-Speats

Spnslicniiany

Somwaptaat |
Sohasa

\\

¢

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 163

are more reusable. In short, two main research issues addressed in this paper are: (1)
building blocks and core design principles for timeless REA enterprise systems, and (2)
implementation of a proof-of-concept prototype system that demonstrates how timeless
REA enterprise systems improve adaptability and application reusability. The remainder of
the paper is organized as follows. The second section discusses the main building blocks
of timeless REA enterprise systems: reflective architectures and the REA enterprise ontol-
ogy. The core principles of designing timeless REA enterprise systems are discussed in the
third section. The fourth section presents a prototype implementation that illustrates
the adaptability and reusability of timeless REA enterprise systems. We start with showing
how to define an enterprise schema and its ontological specifications as part of a reflective
architecture; next, we design two reusable applications that are expressed in terms of the
REA-EO; finally, we show how a change in business practices is accommodated by
the prototype implementation. We end the paper with some conclusions and future research
directions.

BUILDING BLOCKS
Reflective Architectures

A reflective architecture is a means to implement enterprise systems that can be adapted
to new user requirements at run time by retrieving and interpreting descriptive information.
Yoder and Johnson (2002) present the adaptive object model (AOM) architecture as a
particular approach to reflective architectures. An AOM represents classes, attributes, as-
sociations, and behavior as metadata which are stored in a database and then interpreted at
runtime. Consequently, the descriptive information can be modified by nonprogrammer
users to cope with new requirements.

Improved adaptability is the main promise of systems built with a reflective architecture.
However, it should be noted that reflective architectures are more complex. The complexity
results from semantics that are spread across metadata and that are harder to understand.
Studies that aim at a better understanding and representation of metadata include the work
on analysis patterns done by Hay (1996) and Fowler (1997). Further, a decrease in per-
formance results from the fact that metadata need to be interpreted at run time, which
typically includes access to the database system that stores them. Some research has been
undertaken that focuses on improving the performance of reflective systems by leveraging
different technologies, including caching, composite queries, and incremental computation
(Nakamura and Johnson 1998; Yoder and Razavi 2000; Yoder and Johnson 2002).

Research issues needing further exploration comprise the nature of the semantics to be
recorded as part of a reflective architecture including integrated ontological specifications
and using such enhanced semantics as part of enterprise applications. These issues are the
focus of this paper with the REA-EO being used as domain ontology.

The REA Enterprise Ontology

Domain ontologies define the things that are relevant to a specific application domain.
The REA-EO defines the concepts that are relevant for enterprise systems and the relation-
ships between them. The concepts and relationships defined in an ontology are its primi-
tives. Exhibit 2' shows the primitives defined by the REA-EO (McCarthy 1982).

The three core concepts of the REA-EO are resources, events, and agents. Resources
represent objects that are scarce, have utility, and are under the control of an enterprise
(Tjiri 1975). Events represent a class of phenomena that reflect changes in scarce means

! We use the Unified Modeling Language (UML) (Booch et al. 1999) as notation in this paper.

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164 Geerts and Wang

EXHIBIT 2
REA Enterprise Ontology (Adapted from McCarthy 1982)

pasticipation

Quiiaw SRENRE

(economic resources) resulting from production, exchange, consumption, and distribution.
Agents represent persons and agencies who participate in the economic events of the en-
terprise. The REA-EO further distinguishes between outside and inside agents. Outside
agents are economic agents outside the enterprise who participate in the enterprise’s eco-
nomic events. Inside agents are economic agents who are accountable for the economic
events that take place. For example, a customer is an outside agent for both sale and cash
receipt, while a salesperson is an inside agent for sale and a cashier is an inside agent for
cash receipt.

In essence, the REA-EO template in Exhibit 2 is a generic description of an economic
event. The REA-EO recognizes that an economic event should participate in three different
associations: duality, stock-flow, and participation. First, a duality association defines the
association between economic events where the increment economic events are paired with
decrement economic events. For example, sales (decrement of resources) are paired
with cash receipts (increment of resources). Second, a stock-flow association describes the
relationship between an event and a resource. An explicit distinction is made between the
inflow of resources and the outflow of resources. For example, a sale results in an outflow
of products, and a cash receipt results in an inflow of cash. Sale and cash receipt are
economic events while product and cash are economic resources. Third, a participation
association describes an event’s association with outside and inside agents. Duality, stock-
flow (inflow and outflow), and participation are REA-EQO’s association primitives.

Exhibit 3 shows an REA enterprise schema that defines the economic activities for a
car dealer” that we will use as an example throughout the rest of this paper. The left side
of Exhibit 3 shows the car dealer’s sale business process: the exchange of cars for cash
with customers. The right side shows the car dealer’s purchase business process: the
exchange of cars for cash with vendors. In addition, multiplicities are used to define busi-
ness rules that express the car dealer’s policies. Connolly and Begg (2005) define multi-
plicity as follows: “The number (or range) of possible occurrences of an entity type that

2 We left inside agents out for simplicity purposes.

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 165

EXHIBIT 3
REA Enterprise Schema: Economic Activities of a Car Dealer
No Trade-Ins

AN

sy Purchisss

may relate to a single occurrence of an associated entity type through a particular relation-
ship.” For example, the multiplicities for the duality relationship between sale and cash
receipt define a policy stating that credit sales and installments are acceptable while the
multiplicities for the duality relationship between purchase and cash disbursement define a
policy stating that credit purchases are acceptable.

Enterprise schemas such as the one in Exhibit 3 have a dual purpose. First, they result
in a better understanding of the meaning of data and, for enterprise systems, in a better
understanding of the economic activities of a company. The REA-EO further improves
such understanding by providing guidance in the form of its structuring rules: the way the
events are described and aggregated into business processes and the way the business
processes are aggregated into value chains (Geerts and McCarthy 2001). Second, the en-
terprise schemas are mapped into design structures that can then be implemented with
technologies such as relational databases, object-oriented platforms, and XML.

The enterprise schema in Exhibit 3 represents business practices as they occur at a
specific point in time. In today’s highly dynamic business environment, the economic ac-
tivities of a company and its business policies change frequently in order to cope with new
customer demands and market opportunities. For example, the car dealer whose economic
activities are represented in Exhibit 3 does not allow trade-ins. Suppose that the car dealer
changes its business policies and wants to accept trade-ins to increase sales. The existing
enterprise schema must be adapted to the new practice resulting in the enterprise model
shown in Exhibit 4. As a result, the underlying enterprise system must also be recompiled
and redeployed, which is often costly and inefficient. Next, we explore how timeless REA

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166 Geerts and Wang

EXHIBIT 4
REA Enterprise Schema: Economic Activities of a Car Dealer
Trade-Ins

R

3

FSRN

et o SR

A

S

Y

e Farahave

enterprise systems are able to absorb such changes and make enterprise systems more
adaptive.

CORE DESIGN PRINCIPLES

Information systems have a data component or information base and a data structure
or conceptual schema that defines the semantics of the data and the constraints that apply
to them (ISO 1982). Data structures are typically hardwired into the information system,
and changes to them are costly and time-consuming, often requiring the creation or mod-
ification of table or object class definitions and additional programming. On the other hand,
data manipulation such as adding a new customer is easy to do and the cost is minimal.
The objective of timeless enterprise systems is to enable the accommodation of normal
changes in the economic activities and business rules of an organization without affecting
the underlying data structure and programs. As discussed in more detail below, this can be
accomplished by defining semantics and business rules as part of the data component and
thus allows users, especially nonprogrammers, to change them at runtime.

The conceptual schema in Exhibit 3 defines the following semantics and business rules.
First, object classes define what economic phenomena can be part of the enterprise system.
Information about sales, but not information about trade-ins or leases, can be recorded in
the enterprise system. Second, associations define how concepts can interact. For example,
vendors can be linked with purchases and cash disbursements but not with sales. Third,

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 167

while not shown in Exhibit 3 for simplicity purposes, properties define what data elements
can be used for communication about the object classes. For example, communication
regarding sales can be limited to the following data elements: ID, amount, and date. Fourth,
business rules (multiplicities) define additional constraints. For example, the business rules
in Exhibit 3 express the company’s policy of accepting credit sales, installments, and credit
purchases.

The definitions of the object classes, associations, properties, and constraints are an
integral part of the data structure. In this paper, we define an enterprise schema as the part
of the data structure (or conceptual schema) that represents the economic activities actually
taking place in a business organization. The following statement holds when all semantics
are defined as part of the enterprise schema, as is the case for Exhibit 3: “data structure
= enterprise schema.” Changes in the company’s business practices, €.g., a new economic
activity such as trade-ins or a new business rule such as requiring down payments by
customers, would require changes in the data structure and would thus result in costly
implementation work.

A continuously changing business environment requires ongoing changes to object
classes, associations, properties, and business rules. The upper part of Exhibit 5 shows
some alternative revenue generating practices for a car dealer. A car dealer can sell for
cash only, can consider trade-ins, and can consider trade-ins where the value of the traded
car is higher than the value of the new car. Other practices that could be considered but

EXHIBIT 5
A Timeless Enterprise Model for Economic Exchanges

R RS

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168 Geerts and Wang

are not shown in Exhibit 5 are leasing cars and renting cars. Similar to Exhibits 3 and 4,
the models in the upper part of Exhibit 5 hardwire specific business practices into their
data structure, and any changes would result in major modifications of the enterprise system.

Timeless enterprise modeling starts with analyzing the core concepts underlying the
economic activities. For example, there are commonalities among all associations in
the upper part of Exhibit 5: they all represent specific configurations of the more generic
“exchange”? concept. The lower part of Exhibit 5 shows an enterprise schema that replaces
the specific exchanges in the upper part of Exhibit 5 by a generic “exchange” association.
As a result, the user can record any current or future exchange between two economic
events without making any change to the data structure. However, the increased flexibility
comes at a price: reduced semantics. For the model in the lower part of Exhibit 5, exchanges
can be defined between any two events; for example, a trade could be linked with a cash
receipt or a sale with a purchase. Further, the business rules explicitly defined in the models
in Exhibits 3 and 4—such as credit sales, installments, and credit purchases—are no longer
defined in the enterprise schema in the lower part of Exhibit 5.

As illustrated by the diagram in Exhibit 6, further abstraction results in a further in-
crease of flexibility and a further decrease of semantics. Exhibit 6 is an alternative repre-
sentation for the sales business process for a car dealer and thus the left side of Exhibits 3
and 4. All object classes are now modeled as subtypes of DomainObject and all associations
are recorded as Association instances. The domain classes in Exhibit 6 (Cash, Car, Trade,
Sale, CashReceipt, Customer) are modeled exactly the same way as in Exhibit 4. However,
domain-specific associations such as Sale-Customer and their business rules are no longer

EXHIBIT 6
A Timeless Enterprise Model for Associations

3 Geerts and McCarthy (2004) declare exchanges and transformations as subtypes of the duality primitive. We
ignore this distinction here and use the terms duality and exchange interchangeable.

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 169

explicitly defined as part of the enterprise schema. The flexibility is increased since any
association between two domain objects can now be recorded in the information base. For
example, there would be no problem extending the car dealer’s business operations with
leases and recording associations between a lease and a customer or a lease and a cash
receipt.

The increase in flexibility further reduces the semantics. For the model in Exhibit 6,
there are no restrictions on associations between objects; e.g., a Sale instance could be
connected with a Vendor instance. Further, the multiplicities and thus the business rules
defined for the associations in Exhibits 3 and 4 are no longer expressed in Exhibit 6. The
conceptual schemas in Exhibits 5 and 6 still record the actual business activities of an
enterprise and the ““data structure = enterprise schema’ equation still holds.

The examples in Exhibits 5 and 6 illustrate the trade-off between flexibility and se-
mantics. The ideal situation would be where the specification of the semantics is preserved
or even extended while the increased flexibility is maintained. One approach is the use of
a reflective architecture where the descriptions of the enterprise schema are integrated as
part of the conceptual schema. Exhibit 7 illustrates such an extended conceptual schema
where ““data structure = enterprise schema + enterprise schema description.” The enterprise
schema description (middle part of Exhibit 7) does not define domain semantics but pro-
vides a framework to describe the semantics of the enterprise schema as part of the

EXHIBIT 7
Conceptual Schema for Timeless REA Enterprise Systems

FRRR R

SONUERGNT Aohes

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170 Geerts and Wang

information base. Users define an enterprise’s current configuration of economic activities
and business rules. Instances of DomainObjectType define the economic phenomena that
are currently part of the enterprise schema: Cash, Car, Sale, CashReceipt, Customer, and
Trade. Instances of AssociationType define what associations can exist between the domain
objects types (Sale-Customer, Sale-CashReceipt, CashReceipt-Customer, Sale-Car, etc.) and
replace the associations hardwired as part of the data structures in Exhibits 3 and 4. In-
stances of PropertyType define what properties domain object types can have.

The following could be properties for the Sale object type: ID, amount, and date. A
Role instance defines the role a property plays in a specific application. For example, by
declaring date as having role DOO (Date-Of-Occurrence), applications would know that
the date property defines when an event has occurred. Instances of BusinessRulePattern
represent multiplicity patterns that define the business rules that apply to an association.
For simplicity purposes, we limit the lower multiplicity values to O and 1 and the upper
multiplicity values to 1 and * resulting in 16 business rule patterns. Being recorded in the
information base, the semantic descriptions can be updated easily at run time; i.e., no
changes to the data structure are required.

Exhibit 7 further extends the conceptual schema with ontological specifications result-
ing in the following equation: “‘data structure = enterprise schema + enterprise schema
definitions + ontological specifications.” Again, the conceptual schema extension at the
right side of Exhibit 7 does not define the REA-EO but provides a framework to describe
the semantics of the REA-EO or any other ontology as part of the information base. In-
stances of OntologicalType define the REA-EQO’s concept primitives: resource, event, and
agent. The recursive association is needed to define that inside and outside agents are
specializations of agent. Instances of OntologicalAssociationType define the REA-EO’s
association primitives: stock-flow, duality, and participation. The recursive association is
needed to define that inflow and outflow are specializations of stock-flow.

Extending the conceptual schema with ontological specifications adds value in different
ways. First, the architecture in Exhibit 7 supports continuously changing enterprise schema
descriptions as defined by the user. The ontological specifications make sure that the en-
terprise schema descriptions adhere to REA-EQO’s structuring rules and best practices. Stated
differently, the ontological specifications can be used for validation purposes (Geerts et al.
1996). Second, adherence to the REA-EO results in interoperability. Information systems
grounded into the same ontology can be integrated more easily. Third, ontologies them-
selves are subject to changes, and such changes can be accommodated easily by the ar-
chitecture in Exhibit 7. Also, an enterprise can adapt the ontological specifications to its
own needs or the needs of its industry. Fourth, the explicit definition of the ontology
provides us with additional knowledge that can be used as part of applications. Ontology-
driven applications are discussed in the next section.

A PROTOTYPE IMPLEMENTATION

As mentioned above, two issues with reflective architectures and their applications are
increase in complexity and decrease in performance. For example, if we want a list of all
sales, for the conceptual schema in Exhibit 3, we can easily get that list by finding all the
instances of the Sale object class. However, this task becomes more complex when using
an enterprise system that implements the conceptual schema in Exhibit 7. We first need to
find all domain objects whose domain object type is Sale, then we need to use the infor-
mation captured by the DomainObject, Property, and PropertyType object classes and the
associations among them to determine the properties for each of the Sale instances. Simi-
larly, when we need to generate a report that lists all payments for a specific sale using the

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 171

conceptual schema in Exhibit 3, the Sale—CashReceipt association makes that information
readily available. On the other hand, for an enterprise system that implements the conceptual
schema in Exhibit 7, we need to find all associations in which the sale participates and for
which the AssociationType connects the Sale and CashReceipt domain object types. In
other words, applications built with reflective systems need to access metadata at runtime
and are more complex to write and need more processing resources and time.

At the same time, reflective enterprise systems provide substantial benefits over con-
ventional enterprise systems in terms of adaptability. We have developed a prototype to
illustrate the inner workings of a reflective enterprise system. The prototype’s database that
stores all data and metadata was implemented with MS SQL Server 2005 while MS Visual
Basic 2005 was used for application development. Both technologies were chosen because
they are widely available. The structure of the prototype’s database is directly mapped from
the conceptual schema in Exhibit 7 and shown in Exhibit 8. However, we made the follow-
ing decisions when creating the database structure in Exhibit 8: (1) the recursive association
for OntologicalType has not been implemented since it is not required by any of the ap-
plications, (2) binary associations represented by 2..2 multiplicities in Exhibit 7 have been
implemented by two foreign keys, and (3) Exhibit 7 shows that a many-to-many relationship
exists between PropertyType and Role, meaning that a property type can have multiple
roles and the same role can be assigned to multiple property types. However, to simplify
the implementation in Exhibit 8, we assume that a property type can only have one role.

The remainder of this section illustrates the inner workings of a reflective enterprise
system in three steps. We first illustrate how enterprise schema semantics can be imple-
mented with a reflective architecture. More specifically, we illustrate how the enterprise
schema in Exhibit 3, i.e., the car dealer model without trade-ins, is implemented using the
data structure shown in Exhibit 8. The data in Exhibit 9 represent the actual implementation
of the enterprise schema in Exhibit 3. Second, we discuss the design of ontology-driven
applications and their implementation with a reflective architecture. A key element of
such applications is the explicit recording of ontological specifications as part of the me-
tadata. We chose the following two applications for illustration purposes: (1) describe re-
source acquisitions, i.e., show how and when a resource has been acquired, and (2) claims,
i.e., determine the existing exchange imbalances for an economic event. Third, we illustrate
the adaptability of our prototype. More specifically, we extend the car dealer’s business
operations with trade-ins and show how we can adapt the prototype enterprise system to
such a new business practice by manipulating the metadata in Exhibit 9.* The changes
resulting from the company considering trade-ins are shown by the shaded areas in Exhibit
9. The data and metadata in the shaded areas should be ignored when we discuss the
implementation of the enterprise model in Exhibit 3. Ontology-driven enterprise applica-
tions are highly reusable and are able to handle changes in business practices. We will
discuss in more detail how the resource acquisition and claims applications deal with the
trade-ins extension.

Implementing Enterprise Schema Semantics with a Reflective Architecture

As pointed out above, the conceptual schema in Exhibit 7 represents a reflective ar-
chitecture that describes the semantics of an enterprise schema as part of the information
base. Exhibit 9 shows how such a reflective architecture implements the enterprise schema
in Exhibit 3. Following the distinction made in Exhibit 7, the implementation in Exhibit 9

* For simplicity, we ignore the modified multiplicities for the Car-Purchase association: not all cars are purchased.

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172 Geerts and Wang

EXHIBIT 8
Database Structure for Timeless REA Enterprise Systems

Panel A: Enterprise Schema

Association
A_ID DO_ID1 DO_ID2 AT_ID
Association ID: Identifier for References (DO_ID) to the two Defines the Association’s
Associations Domain Objects connected by the Type (its ID)
association
DomainObject
DO_ID DOT_ID
Domain Object ID: Identifier for Domain Objects Defines the Domain Object’s Type (its ID)
DomainObjectProperty
DO_ID P_ID
Links a Domain Object (DO_ID) to a Property (P_ID)
Property
P_ID PT_ID P_VALUE

Property ID: Identifier for Properties Defines the Property’s Type (its ID) ~ Defines the Property’s value

Panel B: Enterprise Schema Description

BusinessRulePattern
BRP_ID M1 M2
Business Rule Pattern ID: Identifier for
Business Rule Patterns Permissible multiplicity patterns for binary Association Types
AssociationType
AT_ID DOT_ID1 DOT_ID2 OAT_ID BRP_ID
Association Type References (DOT_ID) to the Defines the Association Defines the
ID: Identifier for two Domain Objects Types Type’s Ontological Association Type’s
Association Types connected by the Association Association Type (its Business Rule Pattern
Type ID) (its ID)
DomainObjectType
DOT_ID NAME OT_ID
Domain Object Type ID: Identifier The name of the Domain Defines the Domain Object
for Domain Object Types Object Type Type’s Ontological Type (its ID)

DomainObjectTy pePropertyType
DOT_ID PT_ID
Links a Domain Object Type (DOT_ID) to a Property Type (PT_ID)

PropertyType
PT_ID NAME TYPE PT_ROLE
Property Type ID: Identifier The name of the The data type of the Defines the Property
for Property Types Property Type Property Type Type’s Role

Panel C: Ontological Specifications

OntologicalAssociationType

OAT_ID OA_NAME OT_ID1 OT_ID2 OAT

Ontological Association The name of the References (OT_ID) to the Reference (ID) to the

Type ID: Identifier for Ontological two Ontological Types Ontological

Ontological Association Association Type connected by the Ontological Association Type.

Types Association Type Implements the
recursive association.
OntologicalType
OT_ID OT_NAME
Ontological Type ID: Identifier for Ontological Types The name of the Ontological Type

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 173

EXHIBIT 9
Data for the Prototype Implementation

Panel A: Enterprise Schema

DomainObjectProperty Property DomainObject
DO_ID P_ID P_ID PT_ID P _VALUE DO_ID DOT_ID

1 1 1 1 10000 1 2

1 15 2 1 20000 2 2

1 36 3 1 35000 3 2

2 2 4 5 5000 4 7

2 16 5 5 5000 5 7

2 37 6 5 7500 6 7

3 3 7 5 1250 7 7

3 17 8 5 35000 8 7

3 38 9 2 Ford Focus 9 1

4 4 10 2 Acura MDX 10 1

4 18 1 3 2002 11 1

5 5 12 3 2006 12 2

5 19 13 2 Ford Fusion 3 % S 9

6 6 14 3 2005 14 8

6 20 15 4 101 15 3

7 7 16 4 102 16 3

7 21 17 4 103 17 1

8 8 18 4 101 1

8 22 19 4 102 19 3

9 9 20 4 103 20 3

9 11 21 4 104

9 23 22 4 105
3 4 Association
3‘5‘ j AJID DO_IDI DO_ID2 AT_ID
5 D :
27 4 3 2 9
28 S 4 2 9
29 4 5 3 9
30 4 6 1 2
31 8 7 2 2
32 4 8 3 2
3 7 2 1
34 4 14 16
35 7 14 16
36 9 6/1/2007 12 5
37 9 6/2/2007
38 9 6/3/2007 15 4
39 9 6/4/2007 16 4
40 9 5/5/2007 19 4
41 9 5/6/2007 20 4
42 4 C04
43 2 Mustang
44 3
45 4
46 2
47 3
48 4
49 7
50 9 5/7/2007
51 4 P04
52 7 25000
53 9 5/8/2007
54 9 6/2/2007

(continued on next page)

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174 Geerts and Wang

EXHIBIT 9 (continued)

Panel B: Enterprise Schema Description

AssociationType BusinessRulePattern DomainObject Ty pePropertyTy pe
AT_ID DOT_ID1 DOT_ID2 OAT_ID BRP_ID BRP_ID M1 M2 DOT_ID PT_ID
1 1 2 5 13 1 0.1 0.1 1 2
2 2 1 5 4 2 0.1 1.1 1 3
3 1 3 4 3 0.1 0.% 1 4
4 3 1 4 4 0.1 1.% 2 1
5 1 9 4 5 1.1 0.1 2 4
6 9 E: 4 6 1.1 1.1 2 9
7 2 5 2 7 1.1 0.* 3 7
8 5 2 2 8 1.1 1.% 3 4
9 2 7 1 9 0.* 0.1 3 9
10 7 2 1 10 0.* 1.1 7 5
181 2 9 1 11 0.% 0.* 7 4
12 9 1 12 0.% 1.* 8 8
13 3 6 2 13 1.* 0.1 8 4
14 6 3 2 14 1L.* 1.1 9 6
15 3 8 1 15 L* 0.* 9 4
16 8 3 1 16 L* L.* ; 9
17 4 7 4
18 7 4 4
19 4 8 5 DomainObjectType
20 8 4 3 DOT_ID NAME OT_ID
21 5 7 2 1 Car
22 i 5 2 2 Sale
23 5 2 3 Purchase
4 9 2 4 Cash
25 6 2 7 5 Customer
26 8 2 10 6 Vendor
7 CashReceipt
PropertyType 8 CashDisbursement
PT_ID NAME TYPE PT_ROLE 9 Ciade
1 S_Amount int Amount
2 Name string Name
3 Year int Year
4 ID int ID
5 CR_Amount int Amount
6 TAmount int Amount
7 P_Amount int Amount
8 CD_Amount int Amount
9 Date date DOO
Panel C: Ontological Specifications
OntologicalType OntologicalAssociationType
OT_ID OT_NAME OAT_ID OA_NAME OT_ID1 OT_ID2 OAT
1 Resource 1 Duality 2 2
2 Event 2 Participation 3 2
3 Agent 3 Stock-Flow 2 1
4 Inflow 2 1 3
5 Outflow 2 1 3

contains three different types of information: enterprise schema (Panel A), enterprise
schema description (Panel B), and ontological specifications (Panel C).

The enterprise schema in Exhibit 3 has eight enterprise-specific object types which are
defined in the DomainObjectType table in Exhibit 9 (enterprise schema description): Car,
Sale, Purchase, Cash, Customer, Vendor, CashReceipt, and CashDisbursement. Each domain
object type is uniquely identified (DOT_ID), is given a name (NAME), and is classified in
terms of the REA-EO (OT_ID). For example, the second row in the DomainObjectType

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 175

table defines an object type which is identified as “2” (DOT_ID), has name *Sale”
(NAME), has ontological type “2” (OT-ID), and thus is an Event.

Each domain object type further has a number of property types. For example, Sale, a
domain object type, has three property types: a property that identifies the sale (ID), a
property that defines the sale’s amount (S_Amount), and a property that defines when a
sale occurred (Date). Information regarding property types is recorded in the Property Type
table (enterprise schema description). Row one (PT_ID = “1”) defines the S_Amount
property, row four (PT_ID = “4”) defines the ID property, and row nine (PT_ID = “9”)
defines the Date property. It is worth noting that different object types may share the same
property type. For example, the ID property type is used by both Car and Sale. Information
regarding what property types are used to describe each of the domain object types is
captured in the DomainObjectTypePropertyType table in Exhibit 9 (enterprise schema de-
scription). For example, rows 4, 5, and 6 in the DomainObjectTypePropertyType table
define that the domain object type with ID 2 (DOT_ID = “2”), and thus Sale, has three
property types: (1) the property type with PT_ID = “1” and thus S_Amount, (2)
the property type with PT_ID = “4” and thus ID, and (3) the property type with PT_ID
= ““9” and thus Date.

As was illustrated in Geerts (1993) and Geerts (2004), the design of ontology-driven,
reusable applications further requires the recognition of stereotypical roles to be assigned
to property types. For example, the claims application needs to know which event property
type contains the amount to be used for calculation purposes. In Exhibit 9, the Sale.
S_Amount, CashReceipt. CR_Amount, Purchase.P_Amount, and CashDisbursement.CD_
Amount property types are declared as having the role “Amount” (PT_ROLE).

The enterprise schema in Exhibit 3 also has ten associations: Sale-Car, Purchase-Car,
Sale-Customer, Sale-CashReceipt, Vendor-Purchase, Purchase-CashDisbursement, Cash-
Receipt-Cash, Cash-CashDisbursement, CashReceipt-Customer, and CashDisbursement-
Vendor. All ten associations are defined as instances of the AssociationType table (enterprise
schema description) and the following information is defined for each of them: a unique
identifier (AT_ID), the two domain object types that participate in the association type
(DOT_-ID1 and DOT_ID2), the ontological association type (OAT_ID), and the business
rule pattern that applies to the association type (BRP_ID). For example, the first row in
the AssociationType table in Exhibit 9 has “1”’ as identifier, defines an association between
the Car (DOT_ID1 = “1”) and Sale (DOT_ID2 = “2”’) domain object types, is of type
outflow (OAT_ID = “5”°), and has business rule pattern 13 (BPR_ID = *“13”") applying
to it: (1..*) — (0..1). Applied to the Car-Sale association, the business rule pattern with ID
13 implies that not all cars have been sold, but a car can be sold only once while all sales
include one or more cars. The BusinessRulePattern table (enterprise schema description)
contains the sixteen business rule patterns that we recognized above.

The fact that each association type is defined twice in the AssociationType table is
an implementation issue. For example, the first row in the AssociationType table defines an
association between Car and Sale while the second row defines an association between Sale
and Car. Although the information contained in one row can be deduced from the other
row, the use of both rows makes the implementation easier.

According to the REA-EO (McCarthy 1982), there are three types of domain objects
in enterprise systems: resource, event, and agent. The REA-EO further recognizes three
types of domain associations in enterprise systems: duality, participation, and stock-flow.
Stock-flow associations are further differentiated into inflow or outflow. Ontological spec-
ifications are explicitly recorded as part of the metadata in Exhibit 9 (ontological specifi-
cations). The definitions for resource, event, and agent are stored in the OntologicalType

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176 Geerts and Wang

table while the definitions for duality, participation, stock-flow, inflow, and outflow are
stored in the Ontological AssociationType table. Additional semantics are captured by the
association between OntologicalType and OntologicalAssociationType: e.g., a duality as-
sociation is defined between two economic events. This association is implemented by the
OT_ID1 and OT_ID2 columns in the OntologicalAssociationType table. Such information
can be used for validation purposes when defining an REA-structured enterprise schema
(Geerts et al. 1996).

The remaining tables in Exhibit 9 define the actual data: i.e., the phenomena that
actually occur in the enterprise (the enterprise schema). The semantics for the actual data
are defined by the metadata, which are comprised of the enterprise schema description and
the ontological specifications. For example, the first instance of the DomainObject table
(DO_ID = ““17) defines a sale (DOT_ID = ““2”’). The DomainObjectProperty table further
defines that this sale has three properties: P_ID = “1,” P_ID = “15,” and P_ID = “36.”
The values for the P_ID column refer to the actual property description. For example, the
property with P_ID = ““1” is of type S_Amount (PT_ID = “1”) and has value “10000.”
Further, the association table defines how the DomainObject instances are connected. For
example, the first instance of DomainObject (the sale described above) participates twice
in the Sale-CashReceipt association (AT_ID = ‘““9”) and once in the Sale-Car association
(AT_ID = “2”). Consider the instance in the Association table with A_ID = “6.” It defines
an instance of the Sale-Car association (AT_ID = “2”") between the sale represented as
the domain object with DO_ID = “1” and the car represented as the domain object with
DO_ID = “9.”

It should be noted that the system portrayed in Exhibit 9 is not capable of dealing with
more advanced semantic abstractions such as association classes. For example, the reflective
architecture is not able to properly define the situation of a many-to-many duality associ-
ation between Sale and CashReceipt with amount as association class property. These more
complex scenarios are ignored in this paper for simplicity purposes.

Design and Implementation of Ontology-Driven Enterprise Applications

An enterprise system such as the one portrayed in Exhibit 9 integrates metadata defi-
nitions and enables the design of ontology-driven enterprise applications as will be illus-
trated with the following two examples: (1) determine resource acquisitions, and (2) deter-
mine existing exchange imbalances for economic events (claims).

The requirement for the first application is to determine how and when each car was
acquired. The enterprise schema in Exhibit 3 shows that all cars are purchased. However,
in a future scenario, other ways of acquiring the same resource might be considered. For
example, the enterprise schema in Exhibit 4 shows that cars can either be purchased or
traded. A timeless enterprise system needs to recognize current and future business prac-
tices. This can be accomplished by using the following ontology-based (italics) requirement
specification: ““determine the inflow events for all instances of a resource.” From an im-
plementation perspective, the ontological primitives (inflow, event, resource) become place-
holders or variables that can be substituted by actual domain objects and associations at
run time. Next, we discuss how such an ontology-based application works when applied to
the enterprise system in Exhibit 9 only considering the implementation of the enterprise
schema in Exhibit 3.

A potential user interface for the resource acquisition application is shown in Exhibit
10. The application first accesses the information stored in the DomainObjectType and
OntologicalType metadata tables and determines all domain object types with ontological
type “Resource”: Car and Cash. Both resources are shown in the user interface upon

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 177

EXHIBIT 10
Resource Acquisition Application: No Trade-Ins

initialization. The user selects Car, and pushes the “Show Resource Details” button. At
that point, the application finds all Association instances in which a Car instance participates
and for which the AssociationType has “Inflow” as ontological type. Finally, the application
generates the following information for each of the Resource instances: (1) all resource
properties (ID, Name, and Year for Car), (2) the name of the event (Purchase), and (3) the
ID, DOO, and Amount attributes for the inflow event (Purchase) where ID, DOO, and
Amount represent roles. The property with role ID identifies the inflow event. The property
with role DOO records the date the event occurred. The property with role Amount rep-
resents the amount of the event. All information regarding car acquisitions is shown in the
lower part of the user interface in Exhibit 10.

The requirement for our second application is to determine the existing exchange im-
balance or claim for an economic event. The following is a more generic definition of this
requirement, expressed in terms of the REA-EO: “a claim is the existence of a flow of
resources without the full set of corresponding instances of a dual flow” (Geerts and
McCarthy 2000). The application should be able to deal with current and future configu-
rations of exchange networks. For example, the same application should be able to accom-
modate the different duality network configurations in the upper part of Exhibit 5; e.g., an
event participating in one duality association or in a network of duality associations. Next,
we discuss how the claim application works when applied to the enterprise system in
Exhibit 9. Again, we only consider the implementation of the enterprise schema in Exhibit
3 and thus ignore the shaded areas in Exhibit 9.

A potential user interface for the claims application is shown in Exhibit 11. The
application first accesses the information stored in the DomainObjectType and
OntologicalType metadata tables and determines all event domain object types: Sale,
CashReceipt, Purchase, and CashDisbursement. Then, the user selects one of the economic
events. For the example shown in Exhibit 11, the user selects Sale. Upon selection of the
economic event by the user, the application populates the second drop down box with the
instances of the domain object type selected. To determine the ID of the event instances,
access to the DomainObjectProperty, Property, and PropertyType tables is required. For our
example, the application finds four sales. However, the interface portrayed in Exhibit 11
only shows the first Sale instance, the one with ID “101.” Next, the user selects an event

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178 Geerts and Wang

EXHIBIT 11
Claims Application: No Trade-Ins

instance and clicks the “Determine Claim” button. For our example, the user selects
the instance with ID “101.” The application then determines the claim amount as follows:

(1) The application determines the amount for the economic event by finding its prop-
erty with role Amount. The sale (DO_ID = “1”) has three properties and the one
with role Amount is the property with P_ID = “1” (S_Amount). The amount for
Sale 101 is $10,000 (P_VALUE).

(2) The application determines all Association instances of type duality in which the
event (DO_ID = *“17) participates and sums the amounts of its dual events. For
the example in Exhibit 9, the application finds two such Association instances:
A_ID = “1” and A_ID = “2.” For both dual events (DO_ID2 = “4” and DO_
ID2 = ““5”), the application will use the information in the DomainObjectProperty,
Property, and PropertyType tables to find the value of the property with role
“Amount” (CR_Amount). The amount of both cash receipts associated with sale
101 is $5,000, and the total amount for the dual events is $10,000.

(3) The application uses the information from steps 1 and 2 to determine the balance.
The remaining balance (claim) of sale 101 is $0 meaning it has been paid off.

Claim information for the selected event is printed as shown in Exhibit 11: “Claim:
$0.” The lower part of Exhibit 11 further illustrates that the metadata in Exhibit 9 can be

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 179

used for the creation of more elaborate reports. An example of metadata integrated in the
output is the name of the dual events.

Adapting Timeless REA Enterprise Systems and their Applications to Changes in
Business Practices

Today, companies often change their business practices to cope with new customer
demands and market opportunities, such as our car dealership considering trade-ins. With
the reflective architecture shown in Exhibit 7, an enterprise system can be adapted to new
business practices by manipulating the metadata. The shaded areas in Exhibit 9 illustrate
how the enterprise schema in Exhibit 3 can be extended to the enterprise schema in Exhibit
4. A new domain object type with name Trade is added to the DomainObjectType table
(DOT_ID = “9) and classified as an Event (OT_ID = ‘2”’). The shaded areas in the
DomainObjectTypePropertyType table link Trade to three properties: T_Amount, ID, and
Date. T_Amount is defined as a new instance in the PropertyType table and is assigned
the role “Amount.” Further, three new associations are added to the AssociationType table:
Trade-Car, Trade-Sale, and Trade-Customer. The definition of a new association type in-
cludes specifying its ontological type and the business rule pattern that applies to it. For
example, we define the association between Car and Trade as an inflow (OAT_ID = “4”)
and specify the following business rules for it: 1..1 — 0..1 (BPR_ID = “5”).

With the metadata updated, we are now able to add data. The data entered describe the
following transaction: for the sale with DO_ID = ““2,” the car dealer receives a car (trade-
in), in addition to two payments (cash receipts), the value of the car traded is $10,000, and
the trade event occurred on 6/2/2007. A new instance is added to the DomainObject table
(DO_ID = *“13”) and declared as a trade (DOT_ID = “9"). In addition, three properties
are defined for the newly created trade: its identifier is “T01” (ID), its trade amount is
“10000” (T—_Amount), and its date is “6/2/2007 (Date). All three properties are linked
to the Trade instance in the DomainObjectTypePropertyType table. The trade is further
linked to the sale (DO_ID = “2”") and the car (DO_ID = “18”) in the Association table.
The car traded is specified as a 2003 Nissan Altima (ID = “C05”).

Neither of the two applications discussed above needs to be recoded when trade-ins
are considered. Exhibit 12 shows the new output for the resource acquisition application.

EXHIBIT 12
Resource Acquisition Application: Trade-Ins

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180 Geerts and Wang

The application now recognizes the existence of an additional car (DO_ID = “18”) that
has been traded. The transaction’s nature (trade) and its three properties are included in the
application’s output. Exhibit 13 shows the new output for the claims application. The ap-
plication recognizes the extended set of duality association types in which the sale now
participates and correctly calculates the new claim amount: $1,250.

The discussion above shows the adaptability of timeless REA enterprise systems. This
type of flexibility is critical for enterprise systems to adapt to a changing business environ-
ment in a timely and cost-effective manner.

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
Timeless REA enterprise systems combine a leaner enterprise schema (fewer semantics)
with extensive descriptions that capture domain-specific semantics and ontological speci-
fications. The expected benefits of such systems are increased adaptability and reusability.
On the other hand, their design is substantially more complex and applications are slower
since the knowledge-intensive descriptions need to be interpreted. Many issues remain that
need further research including the following.

EXHIBIT 13
Claims Application: Trade-Ins

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Timeless Way of Building REA Enterprise Systems 181

First, criteria need to be developed that help determine the optimal trade-off among the
adaptability, complexity, and efficiency of timeless REA enterprise systems. Second, more
research is needed to fully understand the design and implementation of timeless REA
enterprise systems. An example of an issue to be addressed is how to keep track of the
changes made by a company to its economic activities and business policies over time.
Third, possible extensions to the knowledge-intensive descriptions need to be studied, in-
cluding advanced semantic abstractions, REA-EO extensions, and upper-level ontology
specifications. An example of a semantic abstraction that should be considered in future
research work is association classes. Examples of REA-EO extensions that should be con-
sidered in future research work include commitments, contracts, business events, and work-
flow (Geerts and McCarthy 2004). Upper-level ontologies capture primarily concepts that
are basic to the human understanding of the world (Kiryakov et al. 2001). Examples of
concepts taken from Sowa’s upper-level ontology (Sowa 1999) that could be considered for
extending the ontological specifications in Exhibit 9 include process, juncture, structure,
and situation (Geerts and McCarthy 2002). Fourth, other approaches to timeless enterprise
systems are being proposed such as service-oriented architectures and model-driven archi-
tectures; an in-depth comparison might help to better understand the pros and cons of the
different approaches. In addition, the design of enterprise systems that combine elements
of the different architectural approaches should be considered.

REFERENCES

Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The Unified Modeling Language Reference Manual.
Reading, MA: Addison-Wesley.

Connolly, T. M., and C. E. Begg. 2005. Database Systems: A Practical Approach to Design, Imple-
mentation and Management. Reading, MA: Addison-Wesley.

Fowler, M. 1997. Analysis Patterns: Reusable Object Models. Reading, MA: Addison-Wesley.

Frankel, D. S. 2003. Model Driven Architecture: Applying MDA to Enterprise Computing. Indian-
apolis, IN: Wiley.

Geerts, G. L. 1993. Toward a new paradigm in structuring and processing accounting data. Doctoral
dissertation, Free University of Brussels.

, W. E. McCarthy, and S. R. Rockwell. 1996. Automated integration of enterprise accounting

models throughout the systems development life cycle. International Journal of Intelligent Sys-

tems in Accounting, Finance & Management 5 (3): 113-128.

, and . 2000. Augmented intensional reasoning in knowledge-based accounting systems.
Journal of Information Systems 14 (2): 127-150.

, and . 2001. Using object templates from the REA accounting model to engineer
business processes and tasks. The Review of Business Information Systems 5 (4): 89—108.

, and . 2002. An ontological analysis of the economic primitives of the extended-REA
enterprise information architecture. International Journal of Accounting Information Systems 3:
1-16.

, and . 2004. The ontological foundation of REA enterprise information systems. Work-

ing paper, Michigan State University. Available at: http://www.msu.edu/user/mccarth4/.

. 2004, An XML architecture for operational enterprise ontologies. Journal of Emerging Tech-
nologies in Accounting 1: 73-90.

Hay, D. C. 1996. Data Model Patterns. New York, NY: Dorset House Publishing.

Tjiri, 1. 1975. Theory of Accounting Measurement. Sarasota, FL: American Accounting Association.

ISO. 1982. Concepts and Terminology for the Conceptual Schema and the Information Base, edited
by J. van Griethuysen. New York, NY: ANSIL

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182 Geerts and Wang

Kiryakov, A., K. Simov, and M. Dimitrov. 2001. OntoMap: Portal for upper-level ontologies. In
Proceedings of the Euroconference Recent Advances in Natural Language Processing, 142—
148, Tzigov Chark, Bulgaria.

Kleppe, A., J. Warmer, and W. Bast. 2003. MDA Explained: The Model Driven Architecture: Practice
and Promise. Boston, MA: Addison-Wesley.

McCarthy, W. E. 1982. The REA accounting model: A generalized framework for accounting systems
in a shared data environment. The Accounting Review (July). 554-578.

Nakamura, H., and R. E. Johnson. 1998. Adaptive framework for the REA accounting model. Paper
presented at the OOPSLA’98 Business Object Workshop IV, Vancouver, Canada. Available at:
http: //jeffsutherland.com/oopsla98/nakamura.html.

Sowa, J. 1999. Knowledge Representation: Logical, Philosophical, and Computational Foundations.
Pacific Grove, CA: Brooks/Cole Publishing.

Yoder, J. W., and R. Razavi. 2000. Metadata and adaptive object-models. In ECOOP 2000 Workshop
Reader, Lecture Notes in Computer Science, 1964. New York, NY: Springer Verlag.

, and R. Johnson. 2002. The adaptive object model architectural style. In Proceedings of the
3rd IEEE/IFIP Conference on Software Architecture (WICSA3), 3-27, Montreal, Canada.
Zhao, J. L., M. Tanniru, and L. J. Zhang. 2007. Services computing as the foundation of enterprise
agility: Overview of recent advances and introduction to the special issue. Information Systems

Frontiers 9 (1): 1-8.

Journal of Emerging Technologies in Accounting, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

