
Compositional contract specification for REA
(Abstract)

Fritz Henglein Ken Friis Larsen Jakob Grue Simonsen
Christian Stefansen

Department of Computer Science, University of Copenhagen (DIKU)
{henglein,kflarsen,simonsen,cstef}@diku.dk

September 19th, 2007

Contracts When entrepreneurs enter contractual relationships with a large num-
ber of other parties, each with possible variations on standard contracts, they are
confronted with the interconnected problems of specifying contracts, monitoring
their execution for performance1, analyzing their ramifications for planning, pricing
and other purposes prior to and during execution, and integrating this information
with accounting, workflow management, supply chain management, production
planning, tax reporting, decision support etc.

Andersen, Elsborg, Henglein, Simonsen and Stefansen [AEH+06] define a typed
language for compositional contract specification:2

c ::= Success | Failure | f(!a) | transmit(A1, A2, R, T | P). c
| c1 + c2 | c1 ‖ c2 | c1; c2

Success denotes the trivial or (successfully) completed contract: it carries no obli-
gations on anybody. Failure denotes the inconsistent or failed contract; it signifies
breach of contract or a contract that is impossible to fulfill. For a Boolean predicate
P the contract expression transmit(A1, A2, R, T | P). c represents a contract where
the commitment transmit(A1, A2, R, T | P) must be satisfied first. The commit-
ment must be matched by a transmit event e = transmit(v1, v2, r, t) of resource r
from agent v1 to agent v2 at time t such that P (v1, v2, r, t) holds. After matching,
the residual contract is c in which A1, A2, R, T are bound to v1, v2, r, t, respec-
tively. Note that A1, A2, R, T are binding variable occurrences whose scope is P
and c. In this fashion the subsequent contractual obligations expressed by c may
depend on the actual values in event e; such as a payment being due 8 days after
delivery of the goods. The contract combinators · + ·, · ‖· and ·; · compose sub-
contracts according to contract composition patterns: by alternation, concurrently,
and sequentially, respectively. A (contract) context is a finite set of named contract
template declarations of the form f(!X) = c. By using the contract instantiation (or
contract application) construct f(!a) contract templates may be (mutually) recur-
sive, which, in particular, captures repetition of subcontracts. Contract template
definitions occur only at top level.

The language operates at two levels: the base level of (primitive commitments
requiring the occurrence of) economic events such as transfer of resources between
economic agents, reflecting the basic ontological concepts of the REA accounting

1Performance in contract lingo refers to compliance with the promises (contractual commit-
ments) stipulated in a contract; nonperformance is also termed breach of contract.

2The types are elided here.

FLACOS'07

Page 130

model [McC82]; and the compositional level of contract combinators. In commercial
contracts only transfers of resources (goods, service, money) are included. Produc-
tion events could be included, too, however. Indeed, with the compositional level
being parametric in the base language, any kind of event types could be included
in the base language, also outside the realm of economic events.

A contract-based event-driven architecture An event-driven architecture
(EDA) [EDA06], is, loosely speaking, a software architecture that is organized
around (data representing) events that drive system/component state transitions
which in turn may generate events and other observable outputs.

We are presently working on developing a contract-based EDA for enterprise
resource planning (ERP) systems [Wik]. Its high-level architecture is depicted
in Figure 1. In this architecture, contracts such as standard or customized sales
agreements, leases, etc. can be installed (entered) dynamically. Installed contracts
are then matched against incoming events; after matching an event a contract
is converted into an explicit representation—again as a contract—of the residual
obligations.

Being data (residual) contracts have additional uses beyond monitoring their
execution. They can be inspected, audited, analyzed and changed in response to
failures to perform. Standard or customized report functions can be installed that
at any point in time can be applied to the log of registered events alone (ex-post
reports such as payments received) or, more interestingly, to both the log and the
current contract states. An example of such an ex-ante analysis could be inventory
restocking required to fulfil future demand based on both currently open orders
and previously expedited orders. A basic ex-ante analysis for extracting deadline-
ordered task lists has been described for the commercial contracts of Andersen
et al [AEH+06]. Peyton-Jones and Eber [JE03] have demonstrated sophisticated
compositional pricing analysis for financial contracts. The key point here is that
such analyses are defined once and for all for all definable contracts in an expressive
language, not just a fixed finite set of given contract templates. Consequently, a
custom contract not used before is automatically covered and does not require
development of specialized analysis software.

FLACOS'07

Page 131

Contracts can be thought of as declarative formal (behavioral, temporal) in-
terface specifications in the spirit of software design by contract [Mey97], without
any requirement for modeling real-world contracts. As such a contract functions
as a behaviorial type for the process that generates the (expected) events. In ERP
systems most basic processes that generate events such as order entry and financial
bookkeeping are not automated, but performed by humans. Since a contract is
an explicit representation of what events are expected (allowed) to happen next,
contracts specifications can be used to automatically derive a user interface that
prompts and guides the user through contract execution, guaranteeing that all and
only relevant user interface options are provided at any given point during execu-
tion.

For an automated (executable) process that generates events contract resid-
uation provides run-time verification. Conceivably, with both process code and
contract specification in hand it should principally be possible to prove statically
that a process always complies with its contract. This is bound to require a rather
drastic limitation of expressive power of the base language to achieve practical an-
alyzability while retaining sufficient expressiveness and generality for the intended
domain-specific applications, however. Where such a “soft spot” is—and whether
it exists at all—remains to be seen for now.

Acknowledgements The above reflects ongoing work within the 3d generation Enter-
prise Resource Planning Systems Project (3gERP.org), a collaboration between Copen-
hagen Business School, University of Copenhagen and Microsoft Development Center
Copenhagen made possible by a grant by the Danish National Advanced Technology
Foundation.

The section on contracts is excerpted from Andersen, Elsborg, Henglein, Jakobsen,
Stefansen [AEH+06]; Figure is from Larsen, Simonsen, Stefansen [LSS07]; both with
permission by the authors.

References

[AEH+06] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Simonsen,
and Christian Stefansen. Compositional specification of commercial con-
tracts. International Journal on Software Tools for Technology Transfer
(STTT), 8(6):485–516, November 2006.

[EDA06] Workshop on Event Driven Architecture, October 2006.
http://www.haifa.il.ibm.com/Workshops/oopsla2006/present.html.

[JE03] Simon Peyton Jones and Jean-Marc Eber. How to Write a Financial
Contract. Palgrave Macmillan, 2003. In: The Fun of Programming.

[LSS07] Ken Friis Larsen, Jakob Grue Simonsen, and Christian Stefansen. To-
wards a new high-level architecture for ERP systems (position paper).
October 2007. http://www.3gERP.org/workshop.

[McC82] William E. McCarthy. The REA accounting model: A generalized
framework for accounting systems in a shared data environment. The
Accounting Review, LVII(3):554–578, July 1982.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1997. ISBN 0-13-629155-4.

[Wik] Wikipedia. Enterprise resource planning. http://en.wikipedia.org.

FLACOS'07

Page 132

