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We present a high-level enterprise system architecture that closely models the domain

ontology of resource and information flows in enterprises. It is:

Process-oriented: formal, user-definable specifications for the expected exchange of re-

sources (money, goods, and services), notably contracts, are represented explicitly in the

system state to reflect expectations on future events.

Event-driven: events denote relevant information about real-world transactions, specif-

ically the transfer of resources and information between economic agents, to which the

system reacts bymatching against its portfolio of running processes/contracts in real time.

Declarative: user defined reporting functions can be formulated as declarative functions

on the system state, including the representations of residual contractual obligations.

We introduce the architecture and demonstrate how analyses of the standard reporting

requirements for companies—the income statement and the balance sheet—can be used

to drive the design of events that need registering for such reporting purposes. We then

illustrate how the multi-party obligations in trade contracts (sale, purchase), including

pricing and VAT payments, can be represented as formal contract expressions that can be

subjected to analysis.

To the best of our knowledge this is the first architecture for enterprise resource account-

ing that demonstrably maps high-level process and information requirements directly to

executable specifications.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Enterprise Resource Planning (ERP) systems integrate several information systems of an organization into one system.

Financials, manufacturing, project management, supply chain management, human resource management, and customer

relationship management are typical components of an ERP system.1

ERP systems do in principle a simple thing: theymodel activities in an enterprise and register relevant information about

them so they can be queried and interpreted for whatever is deemed important or required to run the company, ranging

from high-level strategy to down-on-the-floor operations.

Itmay be surprising then to learn that even ERP systems targeted at small andmedium-sized enterprises such asMicrosoft

Dynamics NAV2 or AX3 comprise several million lines of code and thousands of tables in a relational database management
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system. The software architecture of such systems typically consists of a decomposition of the system in terms of tables, code

units, (user interface) forms specifications, data mappers for input/output, etc., built as a three-tier client–server system

running on centralized database servers for their data repository. They do not reflect the “architecture” of enterprises, which

consists of resources (goods, services, money) being bought, processed, sold, and moved around between different parts,

whether physical, functional or organizational, of a company. As a result the translationof business requirements into running

code has to span a large and costly semantic and architectural divide.

Despite the widespread use and business reliance on ERP systems little effort has been spent applying sound theoretical

principles to designing an ERP system from first principles. We argue that using well-known principles from process algebra

and functional programming, as we do here, gives an elegant architecture for ERP systems that more directly reflect business

processes and business intelligence needs.

Taking as our fundamental goal that the ontological architecture for requirements also be the architecture,4 we develop

an event-driven architecture aimed at directly reflecting the domain-oriented requirements. The key motivation is short-

ening the distance between requirements and their formal expression for rapid system prototyping, implementation, and

continuous system adaptation to changing processes and information needs.

Given the size of ERP systems, it is not possible to cover all functionality. Hence this paper restricts itself to only consider

some of the functionality typically contained in the finance module of ERP systems.

1.1. Contributions

The paper contributes the following:

An ERP systemmodel. An ERP system model that

• directly and declaratively reflects enterprise domain concepts, notably resources, events, agents, report functions and

processes;

• doesnot encumber the systemwithnon-enterprise concepts such as “databasemanagement system”, “client-server”,

memory management, etc.

• separates interpretation and registration of (business) events;

• separates (monetary) valuation from resources and thus enables re-valuation;

• supports user-defined contract specifications, which can be executed and analyzed.

Design methodology. An enterprise design methodology based on identifying relevant events to be registered and,

consequently, processes to be modeled from reporting requirements

Formal semantics A formal semantics (architecture reduction semantics) that is

• event-trace based; yet

• orthogonal to the contract (choreography) language, rendering the concrete choice of language independent of the

architecture.5

Prototype. Illustrative parts of a prototype with a text-based interface, implemented in F#.

1.2. Overview

In Section 2we address the question ofwhat tomodel, i.e., represent as data, andwhat not.We start with the premise that

only the information required for reporting purposes need be modeled. We take the standard reports that every company

must supply as our starting point. Section 3 formalizes the entities discovered in this process: agents, resources, valuations

of resources (prices), and events that must me registered for the given reporting requirements. Section 4 illustrates how

declarative reports can be mapped in a natural fashion to the functional programming language F#.

Section 5 discusses the need for representing not only ex post events, but also processes, specifically contracts. Section 5.2

describes the resulting architecture: incoming events modeling real-world activities are matched against process/contract

states expressing current expected/legal events and then put into a log. In Section 5.3 we describe an example of a contract

specification language and show how it integrates with the overall architecture.

We discuss related work in Section 6 and conclude in Section 7.

2. Domain model of resource accounting

In this section we derive a stringent description of the functionality of any system that models the economic status of a

company. Initially, we notice that at any given point in time, such a status can be derived if we have registeredwith sufficient

granularity the events that have occurred up to that point. Events are any atomic, observable change in the state of the world.

The challenge lies in selecting what events to register andwhat events to ignore—and in particular in doing so without a bias

to existing methods of accounting.

4 Motto: the formalized requirements are the system.
5 We have used the contract language by Andersen et al. [3]. Other languages such as WS-CDL are conceivable.
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Fig. 1. Income statement. The income statement summarizes the profits and losses of the company over a given period (hence also the name profit and

loss statement).

Receiving an amount into the company’s bank account seems inherently relevant, whereas the acquisition of a cup of

coffee from the machine on the second floor by the clerk may keep the coffee-drinking accountant happy for a while, but

is unlikely to have a direct, causal, unequivocal, and important effect on the economic status of the company. But this

distinction is vague. A better first approximation to the requirements of relevant events for any accounting system is the

union of all events that are mentioned in (accounting) legislation and current accounting practice. However, this approach

imports exactly the unfortunate bias towards existing accounting practices which we seek to avoid. For example, many

simple accounting systems do not register when a customer accepts a quote and it becomes an order. This is because such

an event has no direct effect on any account or in a traditional ledger or on the income statement. Granted, it has the indirect

effect of starting a process that generally leads to invoicing, and invoicing has a direct effect on an A/R (Accounts receivable)

account and a revenue account.

In this distinction lies the key to the definition of a relevant event: an event is relevant for a particular set of reports if

(the result of) at least one of the reports depends on it. Relevance is thus not an intrinsic property of an event, but of what

information is dependent on it. To wit for standard financial reports by themselves orders are irrelevant, but for production

planning theymost certainly are relevant. This leads to a pleasant andquite obvious definition of relevant: an event is relevant

if and only if it has a direct effect on any of the reports of the company status that we want the system to produce.

The first step is to determine what reports will be needed. Once these are established, we can proceed to find the event

types that affect those reports.

2.1. Reports

We assume that the company needs to produce the following five reports: an income statement, a balance sheet, a cash

flow statement, a list of open (not yet paid) invoices, and a VAT (value-added tax, somewhat similar to sales tax) report. These

are chosen because they constitute the core functionality of the traditional accounting system that is our benchmark—aswell

as the legal requirements faced by any registered company. For brevity of exposition, however, we shall concern ourselves

with only two reports: the income statement (Fig. 1) and the balance sheet. (Fig. 2).

We now consider as an example a company that sells goods. That is, the company sustains itself by buying goods and

selling them with a profit.

For ease of exposition we shall ignore taxes (other than VAT), interests, mortgages, and other advanced accounting

phenomena.We argue that this is without loss of generality, as these are similar to the basic accounting phenomena outlined

here.

What follows are bare-bones definitions of the reports. For amore thorough exposition the reader is referred to a standard

text on accounting, e.g., Weygandt et al.’s book [39].

2.2. Events

To be able to generate the reports outlined above we must identify the changes in the state of the world that affect each

report. Such changes in the state of the world are reported as events, and we will assume, based on the Theory of the Firm

[8], that the events of interest are transfers of economic resources or information between self-interested agents (economic

entities).

All that happens can be expressed in terms of a few basic types of events:

• Transmit a resource or money from one agent to another

• Convey information from one agent to another

• Transform a set of resources into another set of resources

These events can (and should) alsobe further refined,which iswhatwewill donext. Receiving a resource canbe something

for the company (land, property, paper clips) or something intended for selling with a profit. Some resources are put in stock
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Fig. 2. The balance sheet. The balance sheet summarizes assets, liabilities, and owners’ equity at a particular point in time. The balance sheet should always

satisfy the fundamental invariant known as the Accounting Equation, which states that Assets = Liabilities + Owners’ equity.

for later consumption or sale, whereas other resources are consumed the moment they are received (e.g., a session with a

business consultant).

Events that affect the income statement

Revenue. Affected by sending an invoice for normal sale (not fixed assets, for instance) to a customer.

Cost of goods sold. Affected by making an inventory requisition relating to a customer order. Notice that the requisition

event does not inherently contain information about the purchase price, and thus the purchase price must be looked

up or computed. The time of registration varies, but commonly the cost of goods sold is registered at the time where

the sale is invoiced to the customer.

Fixed costs. Affected by receiving an invoice for a fixed cost.

Depreciation. Not an event, but a continuous process. Here depreciation is computed (based on the events describing

purchases and sales of assets). That is, depreciation is computed as a report: it is a function of the registered bona-

fide “real-world” events. If depreciation is registered as discrete “phantom” events, as present accounting practice

mandates, it is difficult to change the depreciation method retro-actively, add a new one, used multiple methods

simultaneously, etc. In contrast, in our approach real-world events and accounting actions are strictly separated.

Events that affect the balance sheet

Fixed assets. Affected (a) by receiving an invoice for a fixed asset or (b) by sending an invoice for a fixed asset.

Rawmaterials. Affected (a) by receiving an invoice for raw materials or (b) by making a requisition for raw materials

from the inventory for production.

Finished goods. Affected by (a) sending an invoice to a customer for a good or (b) by receiving finished goods from the

production process.

Accounts receivable. Affected by (a) sending an invoice or credit note to anyone or (b) receiving payment pertaining to

an invoice into the cash register or the bank account.

Cash. Affected by (a) money being put in the cash register or (b) money being taken from the cash register.

Bank account. Affected by (a) money being deposited into our bank account or (b) money being withdrawn from out

bank account.

Accounts payable. Affected by (a) receiving an invoice or credit note from anyone or (b) sending payment pertaining to

an invoice from the cash register or the bank account.

VAT payable. Affected by issuing or receiving an invoice containing items on which VAT is due.

Owners’ equity. Affected by transferring money or a resource to and from the owners.

Fig. 3 shows an example of the events that need to be registered by a company over a period of time.

3. Formal model of resource accounting

3.1. Agents

Agents represent whole companies as well as categorizations within a company such as organizational unit, location, etc.

They can be thought of as partitioning a company, possibly alongmultiple dimensions for any suitable purpose. To be able to

distinguish resources determined for (re)sale, for use inside the company, but with long-term depreciation or instantaneous

depreciation,we require conceptual resource containers such as operations, fixed assets, losses. In ourmodel agents are thus not

restricted tomodeling only legal persons, organizational units, roles, or actual persons in the real world, as in the REA-model

[20].
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Fig. 3. An example of events relevant to a company.

We have seen that for the reporting purposes presented and analyzed in Section 2 it is sufficient to have an agent

representing a company and a set of internal agents, where each internal agent has a unique company that it belongs to. This

can be captured by defining

Agent = CompanyName × InternalAgentName

CompanyName = String

InternalAgentName = String

where the empty string, ε, also written as “me”, is the designated internal name for the company itself. Wewrite C · I instead
of (C, I) and C instead of C · ε. We write A ≤ C if A = (C, I) for some I ∈ InternalAgentName.

3.2. Resources

A resource is either empty; a unit of resource type identified by a unique resource name such as (one) iPhone, (1 liter of)

water, Picasso’s Guernica painting; a scaled resource, e.g. 2 iPhone; or the formal sum of two resources, which models taking

their union, e.g. 2 iPhone + 1.4water. Note that “a set of resources” is “a” resource—in the singular. If a resource consists of

more than one particular resource type, such as the iPhones and thewater in the last example, we call it a compound resource.

Note the use of the singular “a” if it is intuitively plural (“a set of resources”).

Resource types are usually categorized into unique and nonunique, meaning Picasso’ Guernica is a unique resource,

water and iPhones are normally nonunique treated as nonunique resources. Furthermore, nonunique resources can be

scaled discretely or continuously: there can only be an integral number of iPhones, but water may be managed in ar-

bitrary fractions of liters. These distinctions translate into how resource types can be scaled, corresponding to allowing

{0, 1}, N or R+
0 as scaling factors. We shall not distinguish between resource types here, but model all resource types

as being continuous. To simplify the presentation of the semantic resource model we shall not dwell on the handling of

unique and discrete resources, but treat all resources as continuously scalable. This is without loss of expressive power

since N and {0, 1} can be embedded into the nonnegative reals, and we can maintain a mapping from resource types

to their category and referring to it during computations on resources to ensure that the corresponding invariant is sat-

isfied. Finally, we also allow “negative” resources, which ensures that the difference between resources is always de-

fined.
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Stipulating the existence of a countably infinite set ResourceName of different resource types, each identified by a unique

string, the smallest set of resources closed under the constructions above is the set ResourceName ↪→ R of finite partial maps

from Resource to R.

It is worthwhile observing that ResourceName ↪→ R together with scaling and addition satisfies the axioms of a vector

space. Since the particular names chosen for resource types are irrelevant we might as well identify them with the natural

numbers. This amounts to resources being isomorphicwith the infinite coordinate spaceR∞
over the fieldR. This is an infinite

dimensional vector spacewhose elements are infinite vectors of reals (k1, k2, . . .) or, equivalently, formal sums
∑∞

i=1 kiXi with

finitely many nonzero elements ki. Understood as a resource such a vector or formal sum indicates in its kith component

how many units of resource type i (respectively Xi) are part of it.

For convenience we shall continue using the descriptive strings as resource names instead of formals, Xi, when giving

examples: 2 iPhone + 3MacBookdenotes the compound resource consistingof 2.0 timesoneunit of the resource typedenoted

by iPhone plus 3.0 times one unit of the resource type denoted by MacBook. This is instead of writing 2X234 + 3X4117 or

(0, . . . , 0, 2, 0, . . . , 0, 3, 0, . . .) where the 2 occurs in the 234th component and the 3 in the 4117th component of the infinite

vector and where 234 is the item number of iPhones and 4117 is the item number of MacBooks.

To summarize, we have the following spaces for modeling resource names and resources

ResourceName = String

Resource = ResourceName ↪→ R (∼=R∞
)

Note that the isomorphismbetween vector spaces ResourceName ↪→ R andR∞
corresponds to a product catalog, whichmaps

between descriptions of resource types and their items numbers.

We need an additional vector operation in connection with costing, which we introduce now. We say resource R =
∑∞

i=0 kiXi is nonnegative and write R ≥ 0 if ki ≥ 0 for all i ∈ N. We write R ≤ R′ if R′ − R ≥ 0.

We define the operation Subtract : Resource × Resource → Resource × Resource as follows: for R1,R2 ≥ 0 we define

Subtract(R1,R2) = (R′
1
,R′

2
) if (1) R′

1
,R′

2
≥ 0; (2) R1 + R′

2
= R′

1
+ R2, and (3) R′

1
,R′

2
are least with respect to ≤ amongst vectors

that have the first two properties.

Subtract models the situationwhere wewould like to subtract a compound resource R2 from another resource R1. If there

are more units of a particular resource type in R1 than in R2, after subtracting those in R2 from those in R1 the remaining

units are returned as part of R′
1
, with R′

2
receiving 0. If there are fewer, the roles of R′

1
and R′

2
are reversed. E.g.,

Subtract(2 iPhone + 1MacBook + 1Guernica, 1 iPhone + 5MacBook)

= (1 iPhone + 1Guernica, 4MacBook).

3.3. Valuations

Wedefine a valuation to be amap from Resource to a subspace ValResource of Resource. A valuation expresseswhat general

resources are worth in terms of designated (other) resource types. The subspace ValResource can, in principle, be arbitrary,

but is normally spanned by currencies such as USD, EUR, JPY, DKK. In other words, a valuation normally maps goods and

services to money. In practice valuations map to a single currency, which requires mapping also money in other currencies.

In this case ValResource is isomorphic to R, the amounts in some designated currency, say, DKK. We shall take this as our

default case below, but remark that the ensuing presentation generalizes to arbitrary subspaces of Resource.

Valuations are used for a number of purposes: the most obvious is as a price list as specified in the prices posted in a shop

or, indirectly, as part of the line items of a sales contract. Another is to express the result of manual (re)appraisal of certain

resources a company may have, e.g., in connection with extraordinary write-downs of assets.

Valuations distribute over scaling of resources and taking their union (sum):

Value(R1 + R2) = Value(R1) + Value(R2)

Value(kR1) = kValue(R1)

In other words, the total value of two resources R1 and R2 is the sum of their values; and the value of k copies of a resource

is k times the individual cost. This is tantamount to saying that valuations are linear functions (homomorphisms) between

the vector spaces Resource and R. In particular, a valuation is by given canonically by providing the value of one unit of each

resource type.

Valuation=Hom(Resource,ValResource) (Here ValResource ∼= R)

The linearity requirement does not force pricing in sales contracts to apply the same unit price in every trade. Larger

volumesmay just let the buyer negotiate a lower price, corresponding to a different valuation as the basis for a sales contract.

Linearity rather models distributing value of resources when they are split up as part of movement to and from inventory,

production units, etc. Here the basic assumption is always that items acquired in the same transaction are all equally priced.
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So, if 8 iPhones are bought for stock and 4 of them are transferred to operations later on, the original 4 and the transferred

ones are given the same unit price, whatever that is.

3.4. Events

As stated in Section 2.2 we need events to model transmission of resources, transformation of resources, and conveyance

of information. We will refer to these collectively as transactional events—or in the definition TransactEvent. Each event is

equipped with a time stamp and an identifier for correlating different events to each other. Time stamps are represented by

real numbers that model the time difference to some given base point (say, January 1, 1970, 00:00:00). We use strings for

identifiers.

We arrive at the following definitions:

Event = LogEvent × (Time × Ident)

LogEvent = TransactEvent

TransactEvent = TransmitEvent 	 TransformEvent 	 InformEvent

Time = R

Ident = String

TransmitEvent = Agent × Agent × Resource

TransformEvent = Agent × Resource × Resource

InformEvent = Agent × Agent × Information

Note that 	 denotes disjoint union.

We are left with modeling the information conveyed in information events. The only information events that need be

captured for the given reporting purposes is the transmission of invoices. An invoice carries a lot of information in practice:

sender and receiver, their contact information, company tax code information (for VAT purposes), which resources are

delivered, and expenses for delivering them such as shipping and handling. The resources are usually also split up into

resource names, number of units (scale), and what each unit costs.

Sender, receiver, time and an identification are conveyed as part of the event itself. The remaining information neededwe

represent in the information part. Note that we only capture information that is required for our reporting purposes! This

consists of the resources delivered/to be delivered and price information:

Information=Resource × PriceInformation

The price information, in turn, consists of a price of the resources and their value added tax (VAT).

PriceInformation=Price × VAT

The price is a valuation. To simplify matters we disregard the rather complex conglomerate of legislation on VAT calculation,

and represent VAT as a valuation as well. It is possible to factor VAT valuations into a VAT rate and its application to the

resource price. Since VAT rate and VAT valuation are intercomputable given the price, we shall freely use one or the other

below.

Price = Valuation

VAT = Valuation

Note that an element (r, (p, t)) ∈ Information is a 3-tuple, where each component is essentially a map whose domain is

contained in ResourceName. The price p and VAT t components have an infinite domain, but only those resource types in

the (finite) domain of r are relevant. So in essence the three components each represent a separate map from a finite set of

resource types: For r the mapping goes to R, the number of units of each resource type; for p and r it goes to ValResource, the

price, resp. VAT per unit resource. The three maps can be combined to a single one, of course, which is exactly how invoices

are formulated in practice: A line item contains the item (resource type), the number of units delivered, and price and VAT

per unit or for all units, or some equivalent formulation containing the same information.

Note that we can model bundled prices. A bundle is a compound resource, but with its own price different from the

valuation of the bundle in terms of its constituent resources. This can be modeled by introducing a bundle as an “abstract”
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Fig. 4. Example with formal events.

new resource resource type, whose “implementation” (definition) is the compound resource it is made up of. This allows

pricing of that resource independently of its constituent resources.6

Beyond the above information an invoice also contains payment terms and other information. Following our principle of

capturing information that is required to produce our target reports and nomore, payment terms are not registered, however.

In practice, a reference to the actual invoice from the information event will give access to all such information.

With the above formalization the events of the example in Fig. 3 can be rendered as shown in Fig. 4. A line item consists

of resource type, units delivered, price per unit and VAT rate. Notice that the registered events are a transcription of the

corresponding real-world events, without interceding bookkeeping artifacts.

3.5. Reports

Let us reconsider our reports from Section 2. They are parameterized over

• a time period, with starting date and end date, and

• a time-stamped set of events,

Note that the first part also holds for the balance sheet: the difference to the income statement and other periodic statements

is that the period of interest for it usually covers the starting date of the company until a particular period end date, whereas

the other reports use a more recent start date.

6 This is tantamount to treating a bundle as a product whose bill of materials is the compound resource it is made up of.
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Fig. 5. Definitions of selected subreports.

The time period is solely used to filter out events outside the designated period. Once that is done, each report can then

be defined as a function on the remaining events.

In other words, each report is the result of composing a filtering function with a function that processes the resulting

time-stamped events. It is the latter functionwehenceforth treat as the reporting function properwhen talking about income

statement, balance sheet, and the other reports.

3.5.1. Subreports

In this section we consider some subreports (auxiliary functions) that are necessary to create the income statement and

the balance sheet, which are then defined in the next section.

Below we give the definitions of some of the reports. We use set-comprehension notation as it first appeared in the

SETL programming language [31]. These are simplified specifications for reasons of exposition. We assume that all goods

purchased and transferred into inventory are for eventual sale only, and fixed assets are written as if acquired and sold the

first day of the accounting period (usually year).

We would like to emphasize that we use the term “report” here to denote any computable function on sets of events.

This is in contrast to accounting system practice, where the term usually conveys an expectation that the result be rendered

in some graphical format (as a printable document), and where functions computed as part of other systems (such as data

warehouses, OLAP engines or spreadsheet applications) may carry other designations than report even though they also are

definable as computable functions on business events.

Fig. 5 contains the mathematical definition of the subreports necessary to define the report FIFOCost; all of which will be

described shortly. The remaining subreports can be found in Appendix A and Fig. A.1.

The InvoicesSent and InvoicesReceived reports. As a basic report we need a map from identifiers to corresponding invoice

information. Payment and goods/service delivery events are correlated to invoices via their identifiers that they share with

their invoice.

The InvAcq report. We call a set of resources, where each is associated with a time-stamped price and VAT valuation, priced

resources.

The inventory acquisitions are the priced resources that have been transferred to internal agent Inventory, sorted according

to their time-stamp. The identifier of an internal transmit event is used to indicate from which original purchase the price

information comes.

TheGoodsSold report. Themost interesting reports relate to costing because they reflect accountingdecisions as toattributinga

cost (valuation) to goods sold. For unique resourceswe can uniquely associate a valuation by looking up the price information
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Fig. 6. Income statement. The income statement summarizes the profits and losses of the company over a given period (hence also the British term profit

and loss account).

in the invoice received for it. For nonunique resources, however, many purchases may contain the same resource. Costing is

about allocating a valuation to goods sold that is normally derived from their purchase prices. There are several generally

accepted methods for inventory valuation: first-in–first-out (FIFO) costing, last-in–first-out (LIFO) costing, average costing,

etc. For illustration purposes we use FIFO costing here.

The goods sold in the period are the resources invoiced to another company, which means that they have been or are

committed to being delivered. We assume that all such resources must be moved out of inventory in connection with the

sale, and that the identifier of the move indicates which sale (invoice) it relates to.

The FIFOCost report. FIFOCost returns the value of goods removed from inventory for sale, combined with any remaining

goods that could not be found in inventory. Ordinarily the latter is always 0 for a reporting period. However, the function is

general enough to handle cases where items have been sold before they have been moved into inventory.

With the basic reports of the previous section it is possible to define the income statement and the balance sheet. These

are shown in Figs. 6 and 7.

Fig. 7. The balance sheet The balance sheet summarizes assets, liabilities, and owners’ equity at a particular point in time. The balance sheet should always

satisfy the fundamental invariant known as the accounting equation, which states that Assets = Liabilities + Owners’ equity.
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4. Prototyping in F#

Many details are easy to overlook without a machine-checkable and executable model. For this reason we have produced

a proof-of-concept implementation in F# [32], an ML dialect similar to O’Caml. An important point of this section is to show

that once we have the rigorous formal model, the actual coding of the system is simple, and even reports that are considered

complex in standard ERP systems can be implemented in a succinct way.
We start with some type definitions for modeling agent specifications and resources:

type company_name = string
type internal_agent_name = string
type agent_spec = {company: company_name;

agent: internal_agent_name option
}

type resource_name = string
type resource = (resource_name * float) list

The definitions are straightforward as onewould expect. Notice thatwenaively represent elements of Resource by association

lists.
We model information in invoices as

type invoice_line = {no_items: float;
resource: resource_name;
price: int; (* per item in std. currency *)
vat: int; (* VAT per item in std. currency *)
}

type invoice = invoice_line list

This corresponds to the definition of line items as discussed in Section 3. Finally, we model events, log entries, and logs with
the following definitions:

type ident = string
type log_event =

| Transmit of agent_spec * agent_spec * resource
| Transform of agent_spec * resource * resource
| Inform of agent_spec * agent_spec * invoice

type log_entry =
| Event of log_event * date * ident

type log = log_entry = log_entry list

Here we use dates (year–month–day) as timestamps and strings as identifiers.

In the proof-of-concept implementation F# doubles as the preliminary report language, i.e., the implementation of the

architecture itself is in F#, and to avoid introducing a separate report language at this stage, F# is also used to write reports.

AlthoughF# isquite suitable for thatpurpose, a complete systemwouldmost likelyusea report languagedesignedspecifically

for enterprise reporting rather than a general-purpose language. Reports, for now, are simply F# functions that take the log

as an argument (and possibly additional context arguments).

We present two subreports from Section 3.5.1 of varying complexity: one for listing the received invoices, the other for

computing the accumulated cost of inventory requisitions using the FIFO method.

Invoices received. The set of invoices received can be found by simple inspection of the log. The following function

invoices_received runs through the log, finds the relevant Inform events, filters out the resources (using the function

choose_informs_where), and builds an association list for all invoice ids:

let choose_informs_where f log =
let match_trans trans =

match trans with
| Event(Inform(s,r,inv), d, id) -> f s r inv d id
| _ -> None in

List.choose match_trans log
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let invoices_received me log =
choose_informs_where (fun sender receiver inv d id ->

if sender.company = me && receiver.company <> me
then Some (id, (inv, d))
else None) log

The function invoices_received takes two arguments: the name of my company, me, and the log. Notice that the func-

tion ignores the internal agent specification by only looking at the company attribute. Analogously to the utility function

choose_informs_where that selects information events we define the utility function choose_transmits_where for selecting
transmit events.

FIFO inventory costing. To find the cost ofwhat has been taken out of the inventory using FIFO ordering as described in Section

3.5, we define the following function fifo:

let addf key map f = Map.add key (Map.tryfind key map |> f) map

let fifo inventory time log me =
let stuff_in_inv =

choose_transmits_where (fun sender receiver res d id ->
if receiver = inventory && d <= time then Some(res, d, id)
else None) log in

(* Assumes that log is time-sorted, thus inList is also sorted *)
let inList = List.map (fun (r,t,id) -> lookup_price log me r id)

stuff_in_inv in
let price_map =

List.fold_right (fun inv map -> (* use fold_left for LIFO *)
List.fold_left (fun map (name, no, price) ->

addf name map
(function

| Some s -> (no, price) :: s
| None -> [no,price])) map inv) inList Map.empty in

let outList =
choose_transmits_where (fun sender _ res d _ ->

if sender = inventory && d <= time then Some res
else None) log in

(* Outflows *)
let outSum = List.fold_left add_res null_resource outList in
let price_atomic (name, total) =

let prices = Map.find name price_map in
let rec loop remaining ((n,p)::prices) =

if remaining > n then (n*p) + loop (remaining - n) prices
else remaining * p in

loop total prices in
let total_price = List.sumByFloat price_atomic outSum in
total_price

It uses the following helper functions to look up the prices of a resource in the corresponding invoices.

let find_in_invoice resource invoice =
List.map (fun (name, no) ->

let line = List.find (fun line -> line.resource = name) invoice
in name, no, line.price) resource

let lookup_price log me r id =
let match_invoice = function

| Event(Inform(sender, receiver, lines), _, ident)
when receiver = me && ident = id -> Some lines

| _ -> None in
let invoice = List.first match_invoice log |> Option.get in
find_in_invoice r invoice
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Fig. 8. State diagram showing the life cycle of contracts.

5. A contract-oriented event-based architecture

In this section we describe the formal semantics of a contract-oriented event-based architecture. The architecture is

deliberately designed to allow any contract language to be used. We begin by providing background, proceed to describe the

architecture, and afterwards give a concrete example of a contract language.

5.1. Background

The most basic form of economic interaction is that of an exchange of resources between agents. If we take || to be the

basic composition operator, we could imagine describing an exchange by writing:

transmit (X, Y, 1 apple) || transmit (Y, X, 1 USD)

This represents a particular contract between X and Y that, if and when it is entered, obliges X to transfer an apple to Y and Y
to give X a dollar in consideration. It says very little else. It sets no time limits, and it mandates no particular ordering. It does,

however, say that until an apple has been transmitted and a dollar has been transmitted in consideration hereof, obligations

remain.

If the event occurs that X transmits an apple to Y, the event should be logged, and,moreover, the state of the contract should

now reflect that only one obligation remains. We say that the eventmatches (i.e., satisfies) an obligation in the contract, and

the result of matching is a residual contract representing the remaining obligations.

In general, it is clear that the state of a company requires representation of the processes that it is committed to following,

either for contractual reasons or for non-legal reasons. We suggestively call all such processes contracts, even though they

may also represent processes that have no legal significance, such as internal processes.

The portion of the contract life cycle, that we need to model is sketched in Fig. 8. The steps in the contract life cycle are as

follows:

negotiate. The terms are negotiated between two or more parties (independent agents). We do not model this stage.

start. The contract is started (i.e., entered). At this point the contract describes potentially different series of resource

and information transfer steps that must happen over time.

register. A transmit or inform event is matched against a contract; that is, it is checked to see whether it is a valid step

according to the contract. If it is, the event is registered, and the contract is updated to represent only the remaining

obligations. If it is not, both the offending event and a representation of the residual obligations in the contract at

that time are returned for error processing.

end. The contract is ended. This can happen for a variety of reasons, most commonly because no obligations remain. If a

breach of contract has occurred, wemight choose to end it, albeit unsuccessfully; what happens thereafter is decided

outside of the system.

This means that in addition to logging all transaction events (transmit, transform, and inform), we must log whenever a

contract is started or ended.

All of this leads to an architecture consisting of a contract engine, a log, and a report engine.

5.2. Architecture

Fig. 9 shows a birds-eye view of the architecture. We assume that there is an environment that takes care of collecting

and buffering events. These are then matched, manually or automatically, with an ongoing contract. The environment can

be a GUI, a workflow engine, or other systems that interact with the contract engine or the report engine.

Since the report engine has been developed in a related paper [19], we will concentrate on a formal model of the log

and the running contracts. The log, L, is a set containing elements of the type Event. The precise structure of the abstract
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definitions

Fig. 9. Event-driven, contract-based architecture. Only the components in bold are treated in this paper; for reports readers are referred to Nissen and

Larsen [25].

representation, C, of the running contracts depends on the concrete contract language being used. Each of the running

contracts can be identified uniquely via a contract identifier, cid.

The system changes over time via a sequence of events. Given e ∈ Event, the transition relation on the state of the core

system looks as follows:

〈L,C〉 e−→ 〈L′,C ′〉
The definition of Event from Section 3.4 must be extended (a) to accommodate events that start and end contracts and

(b) to allow for any auxiliary data that the contract language may need:

Event = LogEvent × (Time × Ident)

LogEvent = (StartEvent 	 RegisterEvent 	 EndEvent)

StartEvent = Start × ContractID × AuxData × Contract

RegisterEvent = Register × ContractID × AuxData × TransactEvent

EndEvent = End × ContractID × AuxData

TransactEvent = TransmitEvent 	 TransformEvent 	 InformEvent

Time = R

Ident = String

TransmitEvent = Agent × Agent × Resource

TransformEvent = Agent × Resource × Resource

InformEvent = Agent × Agent × Information

A LogEvent can now be either a start event, a register event, or an end event. All of these three carry a contract identifier to

indicate the contract being started,matched against or ended. They also carry auxiliary data,which are anydata specific to the

contract language. StartEvent additionally contains the body of the contract being inserted into the system, and RegisterEvent

has a TransactEvent as part of its payload. As before all events contain a time stamp of type Time as well as an event identifier,

Ident, chosen by the environment to be able to refer to the event later.

5.2.1. State transitions

We can now begin to consider the state transitions of the core architecture. The transitions are described by the inference

rules displayed in Fig. 10.



F. Henglein et al. / Journal of Logic and Algebraic Programming 78 (2009) 381–401 395

Fig. 10. Transition relation for the core architecture.

start. The start rule inserts a new contract into the system state and logs it. start(cid, x, c)@(t, id) denotes a start event with

contract identifier cid, auxiliary data x, contract c, time stamp t, and event ID id. The contract language-specific operation

C ⊕ (cid, x, c) adds the contract c with identifier cid and auxiliary data x to the running contracts represented by C. The rule

applies only if the chosen identifier, cid, is, indeed, previously unused.

register. In this rule e is the TransactEvent payload of the register event. The operational semantics of the register rule

relies on the operational semantics of the contract language: if the contract language permits the transition C
(cid,x,e)−→ C ′, the

register event is logged, and C ′ is the new state of the running contracts.

end. The end rule removes a contract, cid, from the running contracts, provided that the contract language permits the

transition C
(cid,x)−→ C ′. The removal is written as C 
 cid where 
 is a contract language-specific operator.

5.3. An example contract language

In this section we show how to describe contracts as compositional specifications in the language of Andersen et al. [3]:

c ::=Success | Failure | f (�a) | c1 + c2 | c1 ‖ c2 | c1; c2
| transmit(A1,A2,R, T | P). c

| transform(A,R1,R2, T | P). c

| inform(A1,A2, I, T | P). c

Success denotes the trivial or (successfully) completed contract: it carries no obligations on anybody. Failure denotes the

inconsistent or failed contract; it signifies breach of contract or a contract that is impossible to fulfill. The contract expression

transmit(A1,A2,R, T | P). c

represents the commitment transmit(A1,A2,R, T | P) followed by the contract c. The commitment must be matched by a

transmit event

e = transmit(v1, v2, r, t)

of resource r from agent v1 to agent v2 at time t where the predicate

P[A1 �→ v1,A2 �→ v2,R �→ r, T �→ t]
holds. If the event matches the commitment, the residual contract is c with A1,A2,R, T bound to v1, v2, r, t, respectively. In

other words, A1,A2,R, T are binding variable occurrences whose scope is P and c. In this fashion the subsequent contractual

obligations expressed by c may depend on the actual values in the event e.
The contract combinators · + ·, · ‖ · and ·; · are used to express choice, parallelism, and sequence, respectively. E.g., the

contract

transmit (vendor, customer, Y, T | T < deadline)
|| ( transmit (customer, vendor, $100, T | T < deadline)

+ (transmit (customer, vendor, $55, T | T < deadline) ;
transmit (customer, vendor, $55, T | T < deadline + 60 days)))

expresses a sale of resource Y . The customer is given a choice between paying $100 before a given deadline (line 2) or just

paying $55 before the deadline (line 3) and then paying $55 before 60 days after the original deadline (line 4). Both the
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delivery and the initial payment (whichever is chosen)must occur before the deadline, but because · ‖ · is used, no particular

order is mandated.

The language alsoprovides facilities for defining and instantiating contract templates. The construct f (�a) is an instantiation

of apreviously defined contract template f with actual parameters �a. Contract templates definitions canbe recursive, enabling

us to express repetition using this construct. Themechanics of contract template definition and instantiation are outside the

scope of this paper, but interested readers are referred to Andersen et al. [3] for a complete description.

Example: sales contract. A somewhat more realistic contract for simple exchanges is captured in the following contract

template:

Sale (vendor, customer, resource, pinfo as (p, t), deadline) =
transmit (vendor, customer, resource, T | T <= deadline) ||
(inform (vendor, customer, (resource, pinfo), T’).

(transmit (TaxAuth, vendor, -t(resource), _ ) ||
transmit (customer, vendor, (p + t)(resource), T’’

| T’’ <= T’ + 8 days)))

Once instantiated with a particular vendor, a customer, a resource to be delivered, the pricing of those resources, and a

deadline for delivery, the contract expresses a set of legal executions: the first transmit expresses an obligation on the vendor

to deliver the resource to the customer by the given deadline. The vendor must also send an invoice to the customer, which

then results in an obligation by the tax authorities to collect the VAT amount for the invoiced resources and by the customer

to pay the vendor the agreed-upon price, plus VAT.

Example: internal processes. The term contract is suggestive of modeling certain multi-party commitments with mutual

consideration, specifying who the parties are, which resources are involved, and by when they are to be transmitted.

Formally, though, our contract specifications just specify sets of event sequences: they can also be used to structure and

express internal processeswithin a company and thenmonitor their execution.We can define a universal process as a contract

that can be matched by any transmit, transform or inform event, as long as the agents involved are both internal agents of

the subject company:

UniversalProcess() =
(( transmit (A, B, R, T | A <= Me, B <= Me) +

inform (A, B, info, T | A <= Me, B <= Me) +
transform (A, R1, R2, T | A <= Me));

UniversalProcess()) +
Success

5.3.1. Routing information
Consider a variation of the contract for the sale of Y :

transmit (vendor, customer, Y, T | T < deadline)
|| ( transmit (customer, vendor, $100, T | T < deadline)

+ (transmit (customer, vendor, $55, T | T < deadline) ||
transmit (customer, vendor, $55, T | T < deadline + 60 days)))

Lines 3 and 4 are now conjoined using ‖ rather than ;. If the customer transmits $55 to the vendor before the deadline, this

event can match both lines 3 and 4. Although clumsily written, the contract illustrates the need for a way to disambiguate

between several possible matches. We will call such disambiguation routing information.

The basic idea is that all nondeterminism can be reduced to a series of routing decisions to identify the particular

commitment the event is to bematchedwith.We can express such a series as a sequence of routing decisions of R = {f , s, l, r},
where f (first) and s (second) indicate what choice to make when a + construct is encountered, and l (left) and r (right)

indicate what side of a ‖ construct to continue on. E.g., to ensure that the early payment of $55 is, indeed, matched to line

3, the routing information would be rsl.

5.3.2. Integration with the main architecture

With the contract language in place we can provide the remaining definitions of ContractID, Contract, and AuxData to

integrate it with the architecture:

ContractID = String

Contract = c

AuxData = RoutingInformation

RoutingInformation = {f , s, l, r}*
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Here c denotes the contract body in the syntax of the contract language.

Some contract language-specific definitions remain, namely the running contracts, C, the transition relation, C −→ C ′, and
the operators ⊕ and 
. These require some care to ensure that the contract language’s function and variable environments

are handled properly. Since these have been omitted here for the sake of simplicity, we do not delve into the details, but

instead refer readers to Andersen et al. [3].

6. Related work

6.1. Accounting models

Since Paccioli’s Quadernowork dating back to the 15th century the dominant tradition in all financial accounting has been

double-entry bookkeeping (DEB) (see [39] for a standard financial accounting text). However, as pointed out by McCarthy in

his seminal paper introducing the resources–events–agents (REA) accounting model [20] there are possible advantages to

be reaped from other approaches. We have adopted the use of Resources, Events and Agents from REA and added our own

contracts as formal, structured processes. REA is sometimes described as being in contrastwith DEB. Event-based accounting

does not preclude the use of the ideas presented here in conjunction with DEB, however.

In the last two decades newmanagement accountingmethods have been proposed; notably activity-based costing (ABC)

[1]. A distinctive feature of our model is the separation of events and interpretation—something which is not found in

DEB—and this facilitates management accounting, because one does find oneself get locked into a specific method of

interpretation (say, FIFO valuation). A key aspect of our architecture is that it, accordingly, separates events representing

real-world (ordinarily incontrovertible) events from interpretation (such as the various valuationmethod employed), which

are defined as report functions.Multiple interpretations can coexist, such as tax-baseddepreciation and internal depreciation

schemes. New interpretations can be added as report functions at any time. Conversely, a report function that is no longer

of interest leaves no garbage data behind.

6.2. Contract management

Contract management is a term broadly applied to concepts, models and systems for managing contractual agreements

throughout their lifecycle, from negotation through creation to execution and termination There are numerous papers that

investigate organizational, system integration and, to a lesser degree, semantic aspects of contract management [5,33].

There are also a good number of commercial IT-applications that support contract management.7

Judging by their descriptions these systems are primarily aimed at supporting the reliable production of contracts as

natural-language documents and maintaining some key information about them. They do not seem to contain an expressive,

yet declarative formal language for user-defined contract templates, nor a theory (or tools for) correct transformation and

analysis. In particular, they are generally advertised as integrating with ERP systems, but not, as proposed here, as being at

their core.

6.3. Process languages

A core component of the architecture is the explicit representation of contracts or, more generally, processes that model

legal/acceptable sequences of events, which are time-stamped transfers of resources and information between companies

and their actual or virtual parts.

Since the seminal publications on business process reengineering in the early 1990s [14,11] there has been a marked shift

towards a process-oriented view of theworld inmanagement science. This has naturally induced an interest in process-aware

information systems [12] and enterprise process modeling [10]. A large part of this interest was devoted to various ways of

expressing business processes, or—since they are commonly seen as an instance hereof—workflows. This has lead to efforts

to express workflows in Petri nets [38], π-calculus [35,36], and a variety of other formalisms. A significant other strand of

research was that of integrating processes—however they may be represented formally—with existing information systems,

most saliently ERP systems. The ARIS framework is an important example of this [29]. Both commercial and open source

ERP system (such as, SAP and Compiere, respectively) have introduced process concepts. As of now, however, no other ERP

system has been based on processes from first principles to our knowledge. In otherwords there has been significant research

of business process reengineering, workflow systems, process-aware information systems, and how to build process on top

7 Here is a sample of contract management software in arbitrary order, without prejudice and without any claim as to completeness or representa-

tion: TotalContracts (www.procuri.com), Livelink ECM—eDOCS for Contract Management (www.opentext.com), Meridian (www.meridiansystems.com),

CompleteSource Contract Management (www.moai.com), UpsideContract (www.upsidesoft.com), StatsLog4 (www.statslog.com) for construction con-

tracts, Contraxx (www.ecteon.com), Salesforce.com (www.salesforce.com), SAP xApp Contract Lifecycle Management (www.sap.com), 8over8.com

(www.8over8.com) for oil and gas contracts, IntelliContract (www.intellicontract.com), Softrax (www.softrax.com), On Demand Contract Management

(www.ketera.com), Contract Assistant (www.blueridgesoftware.bz), Autotask (www.autotask.com), Contract Web (cobblestonesystems.com), Accruent

cmSuite (www.accruent.com), Memba Context (www.memba.com), Emptoris Enterprise Contract Management (www.emptoris.com), Contract Advantage

(www.greatminds-software.com). Please note that trademark notices have been omitted for readability.
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of ERP systems. This has lead to a consensus that processes are a useful way to think about how business operate, and

a further consensus that information systems need to closely mirror the business—this is often referred to as business/IT-

alignment. However, no publications have attempted to revise the standard ERP system architecture to directly accommodate

a process-oriented view of the world as we have done here.

As saidnumerous formalismsexist for specifyingprocesses, andanumberof themhavebeenapplied tomodelingcontracts

in the business domain. Timed finite state systems such as timed automata [2] enhance the corresponding finite state system

with deadline constraints on state transitions. Careful limitation of the expressive power of the timing constraints combined

with the finite-state nature enable powerful model checking techniques.

Daskalopulu demonstrates how model checking can be applied to a sales contract whose interactions are modeled as a

timed Petri Net [9]. Molina-Jimenez et al. show how contracts represented as finite state machines can be monitored during

execution [22]. To ensure the finite-state property of the space of control states, their data components—the actual resources

exchanged—are removed, however. Control dependency of interactions on data must be abstracted in the model when

rendering it as timed finite state system. In particular, simple data-dependent protocols such as payment by installment—

pay as often as necessary until the amount due is paid up as long as they all occur within a certain deadline—must be

approximated in some fashion in themodel. The same argument seems to apply to event-driven process chains (EPC) [37,16]

and other workflow languages with event-driven transitions on a finite set of control states. Again, at that level of modeling,

they factor out the data into a separate part and treat events as atomic data with no internal structure.

An interesting recent development is the explicit declarative representation of the Deontic notions [21] of permissions

and obligations by Pace et al. [27,26] for declaratively representing contractual relations. What makes this work engaging is

that they demonstrate an “isomorphic” translation of contractual stipulations to the formalization in their language CL; and

that CL still can be subjected to model checking.

In contrast to the above finite state systems the contract language of Andersen et al. [3] employed heremodels not only the

finite state control structure of contracts, but also all the relevant data: the actions in our state transitions are events that carry

full data representations of resources and agents and constitute thus, by themselves, an infinite domain. The data part is not

factored into unspecified off-process database updates with no data-dependent control state transitions. Unsurprisingly this

makes thecomplexityof semantically faithful contract analysishard:equivalencewithFail, the impossible-to-satisfy contract,

is NP-complete for contracts without recursion [23], and it is undecidable [24] with full recursion, even when restricted to

a very simple predicate language with deadlines as in timed automata. We expect the paucity of the control constructs—

sequential and parallel composition; recursion—however to enable practically useful analyses that include precise analysis

of the resource flows. The contract language has been developed as a match for ERP systems. An empirical evaluation in that

domain is future work. We expect to find the need for variations on and extensions to it, specifically support for parallel

composition of contractual commitmentswhose interdependencies are expressed declaratively by constraints, which is why

it has deliberately been designed to be a minimal core language.

It is important to observe that the contract language specifies process types in the sense of protocols or behavioral types,

rather than executable systems. As such it is more basic than, but analogous to, the “global” Web Services Choreography

Description Language (WS-CDL8) rather than a “local” orchestration (executable process) language such as Web Services

Business Process Execution Language (WS-BPEL9). The global communication perspective in our contract language is moti-

vatedby and inherited from the applicationdomain, specifically theREAaccountingmodel (see above); it constitutes, as such,

a “natural” way of formulating processes in that domain. Such a global language with awell-defined formal semantics enables

an automatic, provably correct transformation to the (parallel) subprocesses of the individual agents (partners, roles) in a

process, as has been demonstrated by Carbone, Honda and Yoshida [7] for an expressive WS-CDL-like language. We believe

this to be an important enabling step in generating process-specific role-based user interfaces, which are expected to be

important in future ERP systems.

6.4. Event-driven architectures

Anevent-drivenarchitecture is anyarchitecture that is built on thenotionof components reacting to events andgenerating

events.

As such any run-timemonitoring/verification system can be thought of as an event-driven (sub)system. This includes active

databases [28, Section 5.8], security automata [30,34], policy engines [13], access control/resource monitors, etc., whether

based on automata specifications, temporal logics such as LTL [17,4], or, for thatmatter, low-level code that implements state

transitions.

What makes our architecture a process-oriented event-driven architecture is that each process (contract specification) is a

denotation for a setof expectedevent sequences. It furthermoreoffers a syntax for composingandsubsequently automatically

manipulating/transforming such denotations: run-time events arematched against events and transformed to represent the

residual process, and residual processes can be input as data to—in principle arbitrary— analysis functions.

Complex event processing [18] also relies on the event view of the world, but is primarily intended for the purpose of

monitoring events from several layers in a network by installing predicates and aggregators. In contrast, in our architecture

8 http://www.w3.org/TR/ws-cdl-10 retrieved on June 10th 2008.
9 http://www.oasis-open.org/committees/wsbpel retrieved on June 10th 2008.

http://www.w3.org/TR/ws-cdl-10
http://www.oasis-open.org/committees/wsbpel
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events are matched against contracts that prescribe the expected arrival of events and act as run-time monitors. Simultane-

ously their syntactic representation can be used as inputs to analyses for generating information, including new events for

matching.

7. Conclusions

We have presented an event-driven architecture consisting of an event processing engine that matches economic and

information events against their process (contract) specifications, and user-definable functions providing information on the

state of the system. As we have seen, these functions can be specified compactly in set notation, and the specifications map

closely to the actual reports in F# code.

At any given point in time the state of the system consists of the logged events and residual contracts modeling expected

future events. Reports can be defined as arbitrary functions. In this fashion derived data, expressed as report functions, are

strictly separated frombase data,whichmodel real-world events. Theory and technology exist for turning naively formulated

functions that read the whole state each time they are executed into efficient on-line algorithms [6,25].

The explicit representation of contracts enables defining reporting functions, ranging fromuseful to-do lists to, as demon-

strated by Peyton-Jones and Eber [15], sophisticated financial valuations. By formulating analyses for all possible (specifiable)

contracts, it is possible to break the binding time dependencies that normally require that a process be coded up first before

a corresponding set of specific reports can be (hand-)coded for it. Notably, we believe that role-specific user interfaces can

be generated from process specifications that always reflect the present state of a process, even if changed at run-time.

Formal contract specifications thus build the core of a process-oriented event-driven architecture: contracts function as

behavioral types for event traces. In the architecture an event is matched against a user-specified contract specification to

validate the contractual validity of the event and compute the residual obligations as an explicit contract specification in its

own. Contract specifications cannot only be used in this passive fashion of matching and flagging errors, but are likely to be

most useful as input to functions operating on them, ranging from to-do lists via automatically generated user interfaces to

sophisticated stochastic analyses for financial valuation purposes.
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Appendix

A. Subreport descriptions

Depreciation. An interesting aspect is depreciation of fixed assets because it reflects certain accounting assumptions,whether

mandated by law or to reflect realistic wear-and-tear or resale considerations. For example, in the straight line depreciation

method the depreciation per time is the same over the useful life-time of an asset; in other words, the value of a resource is a

linear function of time over its depreciation period, thereafter it is 0. The declining balance depreciation methodwrites down

value of priced resources by a certain percentage after each equally long period, with special write-down to 0 once the value

has become sufficiently small; in other words, it is a discrete (periodicized) approximation to an exponential decay function.

We canmodel such depreciation as report functions or even higher-order functions on valuations. Given a priced resource

(R, ((p,m), t)), and a depreciation period d, valuation pt′ of R at time t′ according to the straight line method such that

t ≤ t′ ≤ t + d is t′−t
d

p. The declining balancemethod can also bemodeled as a time-dependent scaling of a resource’s purchase

valuation, with the notable exception of the final write-down to zero, since that step does not distribute over set union of

priced resources. This can be handled by associating the write-down-to-0 threshold with the internal agent containing the

resources, such as FixedAssets: The value of the priced resources at time t is computed according the depreciation formula

in use (linear or exponential), and then the total value is compared to the threshold value associated with the internal agent

whose resources are being value. If it is above the threshold value, its value is returned; otherwise 0 is returned.

The NetCashFlow report. Cash-flow can be simply given by gathering up all money flows in the events.

Here USD is the base vector (as a linear function) for a currency resource. Multi-currency cash flow can be performed by

taking the sum of all such base vectors; for instance USD + Euro + DKK .10

The FAssetAcq and Expenses reports. Analogously to the inventory acquisitionswe define fixed asset acquisitions and operational

expenses. Note that the internal agent Expenses stands for resources that are consumed instantaneously.

10 Recall that currencies such as USD, Euro, DKK are treated as regular resource names.
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Fig. A.1. Definitions of more subreports.

VATOutgoing and VATIncoming. The incoming and outgoing VAT amounts are computed from the invoices by employing their

VAT valuation components.
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