
3 An REA-Based Example Application

By Christian Vibe Scheller

In this chapter I will show you just how easy it is to use REA for develop-
ing software applications. I will do so by developing a simple order web-
site, where Joe’s customers can order pizzas. The finished webpage will
look like this:

Fig. 92. Joe’s web shop

The customer enters his order by first entering his name and address.
This allows Joe’s Pizzeria to know where to deliver the pizzas and to
whom. If the customer is already registered in the system, he can press the
link labeled “already a customer?” This will cause the web page to display
the customer’s address without the customer having to type it himself.

130 3 An REA-Based Example Application

The customer proceeds to enter his order by specifying which pizzas he
wants to order and how many. The web page responds by calculating the
total amount the customer has to pay for the order.

Finally, the customer presses the submit button. Only then will all the
order information be stored in the database. In a real web application the
customer would then have to specify credit card information, etc., but we
will skip this part for the sake of simplicity.

3.1 Representing the Metamodel

A special concern when implementing an application based on the REA
model is that the REA model exists on two separate levels of abstraction
(the application model and the metamodel).

As a general rule we should not mix two levels of abstraction in the
same source code. While it is possible to do so in programming languages
that support reflection, it is almost always the case that the reflection code
and the reflected code resides in different components.

We need to make a choice: If we implement the application model, we
will just have to map the concepts of the metamodel as well as possible to
the existing metamodel of the programming language (e.g. by using inheri-
tance to represent metamodel elements or by using attributes to describe
metadata). If we implement the metamodel however, the application model
becomes data and we are basically developing our own programming lan-
guage.

I can see the benefits of both approaches: I find that the first approach is
easy to explain and understand whereas most developers get scared by the
second approach. The second approach, however, results in a model that
captures the deep knowledge of the business model in a much more pro-
found way.

We will look into the approach of implementing the metamodel in chap-
ter An Aspect-Based Example Application at the end of Part II of this book,
but for now we will stick to implementing the application model.

3.2 Component Model

Let us start out by defining the components that we want to build our ap-
plication from. The dependencies between the different components are
shown in Fig. 93.

3.2 Component Model 131

Joe’s Web

Domain Model

REA Model

Data Access Layer

Database

OLAP

Fig. 93. Component model of the REA sample application

REA model defines the underlying REA model. Classes such as Order
and Customer will inherit from base classes defined in this component.
The REA model component will be designed with reusability in mind, so it
can be reused in other REA-based applications.

Domain model contains all the entities that make up Joe’s Pizzeria. In a
real-life application the domain model would contain everything including
purchase, production, salaries, etc., but in our small sample application we
will only model sales orders and customers. We will make the design rule
that all classes in the domain model must inherit from one of the base
classes in the REA model component.

Joe’s Web is the actual web site that the customers will be visiting when
they want to order pizzas. Joe’s web consists of a number of web pages
running on a web server. As a design rule we will not put any business
logic directly in this component. All the business logic will instead be
placed in the domain model and REA model components.

Data Access Layer is responsible for retrieving objects from the data-
base as well as storing objects in the database. The process of transforming
a domain object to its database equivalent is often referred to as O/R map-
ping. While O/R mapping tools exist, in the case of this simple web appli-
cation we will just be writing the code ourselves.

Database is where the data (orders, customers, etc.) gets stored. The da-
tabase is the only persistent component in the application, so if we want
our data to be available over time we need to put it in the database.

OLAP – In our sample application we would like to provide Joe with all
kinds of information about his business: What kinds of pizzas are the most
popular? Are sales going up or down? Etc. In my opinion an OLAP cube is
the ideal tool for this kind of information.

132 3 An REA-Based Example Application

Fig. 94. REA Model Component

3.3 The REA Model Component 133

3.3 The REA Model Component

Fig. 93 shows the REA model that we will be basing our application on.
As can be seen, the model is not a complete REA model. This is because
we don’t need concepts such as duality in our sample application. The
simplification of the REA model is a pattern in itself called MODELING
COMPROMISE.

Each object in the REA model is defined as an abstract base class. When
we later define our domain model, each of the domain objects is going to
inherit from one of these base classes. The exception to this rule is the
Event class, which does not have a domain counterpart.

As can be seen from the diagram, the Agent class has two fields. The
first field is the ID which is a unique identifier for the Agent class. The
main purpose of the ID field is to identify the agent record in the database
as well as to solve the ambiguity that would otherwise occur if two agents
were to have the same name. The Name field is also a kind of identifier of
the agent but it is less strict than the ID in that it is not necessarily unique.
On the other hand the Name is the identifier that humans use: “Did John
Doe receive his pizzas?” Joe might ask. Anyway, here is the code:

public abstract class Agent {
public int ID;
public string Name;

}

Just like agents, Resources contain an ID and Name. In addition a re-
source has a Value which is defined as the value in US dollars of a single
unit of the resource, i.e., the price of a single pizza:

public abstract class Resource {
public int ID;
public string Name;
public double Value;

}

The Contract class contains an ID field and two collections: A collec-
tion of increment commitments and a collection of decrement commit-
ments.

public abstract class Contract {
public int ID;
public List<IncrementCommitment> IncrementCommitments = …
public List<DecrementCommitment> DecrementCommitments = …

}

134 3 An REA-Based Example Application

First of all it is worth noting that the Increment Commitment class,
unlike the Agent, Resource and Contract classes, does not have an ID. This
is because commitments do not have identities – after all what is the dif-
ference between receiving ten dollars and receiving five dollars and then
another five dollars? Another thing worth noting is that the commitment
classes contain a fulfillment mechanism:

Once a certain commitment is fulfilled, the application can call the
commitment object’s Fulfill() method. This will cause the commitment to
change its Fulfilled field to true and will also cause the commitment to
generate an economic event based on its own information. Since the com-
mitment itself does not know what to do with this economic event, it will
pass it to the calling application using the EventCreated delegate.

public abstract class IncrementCommitment {
public Resource Resource;
public double Amount;
public Agent Provider;
public bool Fulfilled = false;
public event IncrementEventCreatedHandler EventCreated;

public void Fulfill() {
 Fulfilled = true;

IncrementEvent e = new IncrementEvent(this);
 EventCreated(e);
 }
}

Basically, decrement commitments are identical to increment commit-
ments except they have a recipient instead of a provider. While writing this
chapter I was debating with Pavel whether decrement and increment com-
mitments should actually be modeled as different classes or if they should
rather be merged into a single generic commitment class. In the end we
decided that the semantic difference between the two types of commit-
ments is so important to the whole REA model that they should be kept
separate.

The Increment Event and Decrement Event will be generated by the
REA model component whenever a commitment is marked as fulfilled by
calling its Fulfill() method.

public class IncrementEvent {
public DateTime Date;
public Resource Resource;
public double Amount;
public Agent Provider;

public IncrementEvent(IncrementCommitment commitment) {
 Date = DateTime.Now;
 Resource = commitment.Resource;

3.3 The REA Model Component 135

 Amount = commitment.Amount;
 Provider = commitment.Provider;
 }
}

Fig. 95. Domain Model Component

136 3 An REA-Based Example Application

3.4 The Domain Model Component

The diagram in Fig. 95 shows the domain model component. It is worth
noting that the model does not contain any associations between domain
classes. This is because all the associations are inherited from the REA
model component. It can also be seen that each domain class inherits from
a corresponding REA class.

A Customer is basically an agent. An Address field has been added so
that Joe will know where to deliver the Pizzas.

public class Customer : Agent {
public string Address;

}

Pizzas are resources.

public class Pizza : Resource {
}

The Currency class is needed because the REA model expects every
commitment and event to have a Resource. The Currency class represents
monetary value. In reality, only one type of currency will be used in the
application, namely US dollars, so we implement a singleton pattern.

public class Currency : Resource {
private Currency() {}

public static Currency USD {
get {

Currency usd = new Currency();
 usd.ID = 0;
 usd.Name = "USD";
 usd.Value = 1;

return usd;
 }
 }
}

An Order Line is a decrement commitment where Joe’s Pizzeria com-
mits itself to deliver a given number of pizzas of a specific type to a cus-
tomer.

public class OrderLine : DecrementCommitment {
}

A Payment is an increment commitment where the Customer commits
himself to pay Joe’s Pizzeria a certain amount of currency.

3.5 The Database 137

public class PaymentLine : IncrementCommitment {
}

The Order class is the only class in the domain model component that
adds something that could reasonably be called business logic. The order is
able to calculate the total amount (in USD) that the customer should pay
for his pizzas. The order can also add a payment line based on this total to
its incoming commitments.

public class Order : Contract {
public double Total {

get {
double total = 0;
foreach (OrderLine line in DecrementCommitments) {

 total += line.Amount * line.Resource.Value;
 }

return total;
 }
 }

public void AddPayment(Customer customer, Currency currency) {
 IncrementCommitments.Clear();

PaymentLine line = new PaymentLine();
 line.Amount = Total;
 line.Resource = currency;
 line.Provider = customer;
 IncrementCommitments.Add(line);
 }
}

All in all the domain model component consists of only 28 lines of code
(not including blank lines and closing brackets).

3.5 The Database

The database is designed to mimic the domain model as closely as possi-
ble, see Fig. 96. All fields have the same name and are of the same data
type as in the domain model. A few exceptions are necessary, however,
due to the nature of databases:

In the domain model order lines and payment lines are part of an order.
In the database this is modeled by adding an order ID to each order line
and payment line.
In the domain model resources, providers and recipients are references
to resource and agent objects. In the database, resource ID, provider ID
or recipient ID are foreign keys to the pizza and customer tables.

138 3 An REA-Based Example Application

Fig. 96. The database

3.6 The Data Access Layer

The data access layer contains a single static class with a number of meth-
ods for retrieving and saving data to the database, see Fig. 97.

These methods are extremely simple so I will not waste too much space
listing all the code. Here is a single example showing the code for the Get-
Pizzas() method:

public static Dictionary<int, Pizza> GetPizzas() {
Dictionary<int, Pizza> pizzas = new Dictionary<int, Pizza>();
using (SqlConnection connection = new SqlConnection("…")) {

 connection.Open();
SqlCommand command = new SqlCommand("select number, name,

 price from pizza", connection);
SqlDataReader reader = command.ExecuteReader();
while (reader.Read()) {

Pizza pizza = new Pizza();
 pizza.ID = reader.GetInt32(0);
 pizza.Name = reader.GetString(1);
 pizza.Price = (double) reader.GetDecimal(2);
 pizzas.Add(pizza.ID, pizza);
 }
 }

return pizzas;
}

3.7 Joe’s Web 139

Fig. 97. The data access layer

One of the interesting features of the data access layer is that it is re-
sponsible for saving the economic events generated by the commitments. It
does so by attaching an event handler to the order lines and payment lines
in the GetOrders() method:

public static Dictionary<int, Order> GetOrders() {
…
…
OrderLine line = new OrderLine();
order.DecrementCommitments.Add(line);
line.EventCreated +=

new DecrementEventCreatedHandler(OrderLine_EventCreated);
…
…
PaymentLine line = new PaymentLine();
order.IncrementCommitments.Add(line);
line.EventCreated +=

new IncrementEventCreatedHandler(PaymentLine_EventCreated);
…
…
}

static void OrderLine_EventCreated(DecrementEvent e) {
 SaveDecrementEvent(e);
}

static void PaymentLine_EventCreated(IncrementEvent e) {
 SaveIncrementEvent(e);
}

3.7 Joe’s Web

Now that all the underlying components are in place we are ready to de-
velop the user interface.

140 3 An REA-Based Example Application

The order web page is developed in ASP.Net and uses the page’s View-
State to store the order and customer objects between post backs. This is
extremely convenient when you base your development on a domain
model.

public partial class CreateOrder : System.Web.UI.Page {
Order Order;
Customer Customer;

protected void Page_Load(object sender, EventArgs e) {
if (!IsPostBack) {

 Order = new Order(Facade.GetNextOrderID());
 OrderNumberLabel.Text = Order.ID.ToString();
 Customer = new Customer(Facade.GetNextCustomerID());

foreach (Pizza pizza in Facade.GetPizzas().Values) {
ListItem item =

new ListItem(pizza.Name, pizza.ID.ToString());
 ResourceList.Items.Add(item);
 }
 ViewState.Add("order", Order);
 ViewState.Add("customer", Customer);
 } else {
 Order = (Order) ViewState["order"];
 Customer = (Customer)ViewState["customer"];

foreach (OrderLine line in Order.DecrementCommitments) {
 AddOrderLineTableRow(line);
 }
 }
 }

If the user presses the Already a customer link, see Fig. 92, the web
page will search the database for a customer with the correct name and
then use that customer as the recipient for the order lines. The web page
will also display the customer’s address information:

protected void AlreadyCustomer_Click(object sender, EventArgs e) {
foreach (Customer customer in Facade.GetCustomers().Values) {

if (customer.Name == NameTextBox.Text) {
 Customer = customer;
 AddressTextBox.Text = customer.Address;
 ViewState.Add("customer", Customer);

break;
 }
 }
}

When the user presses the add to order button, the web page will gener-
ate an order line based on the information that the user has entered and
then add that order line to the order object:

3.8 The Fulfillment Page 141

protected void AddToOrder_Click(object sender, EventArgs e) {
OrderLine line = new OrderLine();

 line.Amount = double.Parse(QuantityTextBox.Text);
 line.Resource = Facade.GetPizzas()[ResourceList.SelectedValue];
 line.Recipient = Customer;
 Order.DecrementCommitments.Add(line);
 AddOrderLineTableRow(line);
 ViewState.Add("order", Order);
 TotalAmountLabel.Text = Order.Total.ToString("#.00");
}

The final piece of code that we need for our web page is the code behind
the Submit your order button:

protected void Submit_Click(object sender, EventArgs e) {
 Order.AddPayment(Customer, Currency.USD);
 Customer.Name = NameTextBox.Text;
 Customer.Address = AddressTextBox.Text;

Facade.SaveCustomer(Customer);
Facade.SaveOrder(Order);

 Response.Redirect("MainPage.aspx");
}

Now everything is in place and Joe is ready to receive orders from his
customers.

3.8 The Fulfillment Page

Once the customer has submitted the order, Joe needs to keep track of it.
He needs to know whether the customer has received his pizzas and
whether he has paid for them or not. For this purpose the system contains a
fulfillment page, illustrated in Fig. 98.

142 3 An REA-Based Example Application

Fig. 98. The fulfillment web page

By checking the checkboxes, Joe can mark a specific order line or pay-
ment line as Fulfilled. The fulfillment page supports scenarios where the
customer pays up front for his pizzas as well as scenarios where the cus-
tomer pays on delivery. At least in the area where I live, both these scenar-
ios occur regularly.

Less realistic is the fact that Joe can partly fulfill an order, but only by
providing all the pizzas of a specific type at once. This flaw is caused by
the simplified fulfillment mechanism we implemented in the REA model.

Behind the scenes the fulfillment page is using the same domain model,
data access layer and database as the order web page. When Joe presses
the Save Changes button, the web page runs through all checkboxes and
calls the associated order line or payment line’s fulfill method if necessary:

3.9 The OLAP Cube 143

protected void SaveChanges_Click(object sender, EventArgs e) {
for(int i=0; i < OrderLineTable.Rows.Count; i++) {

CheckBox checkbox =
 (CheckBox) OrderLineTable.Rows[i].Cells[3].Controls[0];

if (checkbox.Checked &&
 !Order.DecrementCommitments[i].Fulfilled) {
 Order.DecrementCommitments[i].Fulfill();
 }
 }

for (int i = 0; i < PaymentLineTable.Rows.Count; i++) {
CheckBox checkbox =

 (CheckBox) PaymentLineTable.Rows[i].Cells[3].Controls[0];
if (checkbox.Checked &&

 !Order.IncrementCommitments[i].Fulfilled) {
 Order.IncrementCommitments[i].Fulfill();
 }
 }

Facade.SaveOrder(Order);
 Response.Redirect("MainPage.aspx");

}

This eventually causes decrement events and increment events to be
stored in the database, see Fig. 99:

Fig. 99. Decrement event table

3.9 The OLAP Cube

Now it is time to generate some management reports based on our event
data.

144 3 An REA-Based Example Application

To make it really simple let us just add a simple Microsoft Access pivot
table on top of each of the event tables. While this is not a real OLAP cube
it still provides us with the same basic functionality.

The definition of the cube based on decrement events is in Fig. 100.

Fig. 100. Definition of the decrement event table

We can use this cube to get simple sales statistics based on Joe’s pizza
sales.

Fig. 101. Pizza sales

It is probably easier to see the results if we present them as a bar chart in
Fig. 102.

3.9 The OLAP Cube 145

Fig. 102. Pizza sales bar chart

Based on these figures Joe should probably remove the Pizza Pollo e
Pesto from his menu and instead consider adding more vegetarian pizzas.

We can also have a look at the increment events in Fig. 103.

Fig. 103. Cash receipts

Again let’s look at the data as a bar chart in Fig. 104.

146 3 An REA-Based Example Application

Fig. 104. Cash receipts as bar chart

All in all it looks as if things are going well for Joe: sales have been
steadily increasing over the year.

3.10 Conclusions

Hopefully this example application has shown that it is indeed simple to
develop an REA-based business application. The main benefits of doing so
are:

By basing the domain model on a proven and well-understood core
model (the REA model) we minimize the risk of design flaws in our ap-
plication. By demanding that all domain classes inherit from base
classes in the REA model we are able to perform a design-time check
that the domain model is consistent.
Due to the fact that we base our domain model on a model that covers a
larger set of business cases than the domain model itself, it is relatively
easy to extend the domain model at a later time. If for instance Joe de-
cides to track usage of raw materials for making pizza, we know that
this will easily fit into the model.

3.10 Conclusions 147

Because much of the business logic resides in the reusable REA model
we can minimize the development effort. In the example application we
were able to create a complete domain model for the pizza sales applica-
tion with only 28 lines of code.

While I strongly recommend that you start using the REA-model there
are of course also some caveats that you need to take into consideration:

If you are developing an application that really is not about resources,
events and agents (for instance a document management system), you
may end up spending a lot of time trying to “shoehorn” the application
into the REA model. It is important to decide early on whether the REA
model is applicable.
While the REA model is very powerful it is also very abstract. If you try
to explain your design to a customer or fellow employee, you may find
that explaining the underlying REA model is difficult. Trying to hide the
fact that you are basing your design on an REA model may also be a
bad idea, because major design decisions are based on the decision to
use REA (e.g., why should the customer ID be placed on each order line
instead of on the order itself).

