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Abstract. Standardization efforts to simplify the management of cloud
applications are being conducted in isolation. The objective of this pa-
per is to investigate to which extend two promising specifications, USDL
and TOSCA, can be integrated to automate the lifecycle of cloud appli-
cations. In our approach, we selected a commercial SaaS CRM platform,
modeled it using the service description language USDL, modeled its
cloud deployment using TOSCA, and constructed a prototypical plat-
form to integrate service selection with deployment. Our evaluation in-
dicates that a high level of integration is possible. We were able to fully
automatize the remote deployment of a cloud service after it was se-
lected by a customer in a marketplace. Architectural decisions emerged
during the construction of the platform and were related to global service
identification and access, multi-layer routing, and dynamic binding.

Keywords: USDL, TOSCA, cloud service lifecycle, service description,
service management.

1 Introduction

Standardization efforts are paving the way which leads to the mainstream adop-
tion of SaaS (Software-as-a-Service) and cloud computing environments [1]. Cur-
rently, different players (e.g., OMG, W3C, Eurocloud, NIST) are undertaking
several initiatives1 (e.g., USDL, TOSCA, CCRA, OCCI) to provide useful and
usable standards for cloud computing. In 2009, it was argued that no standard
existed [2]. This has changed. For example, The Open Group is working on the
Cloud Computing Reference Architecture (CCRA) and EuroCloud is devising
guidelines on law, data privacy, and compliance.

1 http://cloud-standards.org
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Nonetheless, these initiatives have two limitations. On the one hand, efforts
are being conducted in isolation and it is not clear to which extend they can
be integrated and, on the other hand, there is a lack of certainty as to which
standards provide adequate levels of interoperability. For cloud providers (e.g.,
HostEurope.com and JiffyBox.de), advances in interoperability can simplify
the countless activities involved during the life cycle of applications.

The objective of this paper is to study to which extend current cloud specifica-
tions and standards are interoperable. In particular, we investigate how USDL
(Unified Service Description Language) [3,4] and TOSCA (Topology and Or-
chestration Specification for Cloud Applications) [5] can be integrated to link
the description and the management of cloud services2, respectively. USDL is
being explored by several research projects to enhance the description of service
offerings to facilitate service discovery and selection [6]. TOSCA helps providers
to automate the deployment and management of services.

Our researchdesignuses theSaaSapplicationSugarCRM3, anopen-source,web-
based customer relationshipmanagement (CRM) platform, as a representative use
case for evaluating the interoperability level of USDL and TOSCA. Therefore, the
various SugarCRM service offerings were modeled with their pricing models, soft-
ware options, and legal statements in USDL. The SugarCRM deployment, which
included virtual machines, databases, and web servers, as well as its management,
was modeled with TOSCA. Based on these activities, the development of a loosely
coupled platform as a mean to achieve interoperability between the two specifica-
tionswas conducted, building the core part of the proposed approach.The develop-
ment of the platform, called SIOPP (ServIceOffering andProvisioningPlatform)4,
involved taking architectural decisions to enable the global and unique identifica-
tion of services described with USDL, the remote access and querying of USDL
service descriptions, the intelligent routing of service requests to providers, and
the dynamic binding of TOSCA deployment descriptors to service descriptions.

The evaluation of the platform indicated that a high degree of interoperability
was achieved. It became possible to select a cloud service from a marketplace,
route the request to a provider which had previously announced to offer the
service, and deploy the cloud service using plans which accounted for the char-
acteristics of the service. After setup and configuration, all these steps were
conducted automatically without requiring human intervention. Future work re-
quires the replication of our research using other emerging specifications (e.g.,
CloudAudit for auditing and BSI-ESCC for security) to support the full life cycle
of cloud applications from cradle to grave.

This paper is structured as follows: In Section 2, we illustrate a motivating
scenario explaining the need to integrate cloud specifications. Section 3 explains
how the SaaS SugarCRM from our scenario was described using USDL and how
its deployment was specified using TOSCA. The requirements for a platform
to make USDL and TOSCA interoperable, as well as the main architectural

2 We will use the terms service and cloud application to refer to Software-as-a-Service.
3 http://www.sugarcrm.com/
4 SIOPP is pronounced ‘shop’.
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decisions are presented in Section 4. Section 5 evaluates the developed platform.
Section 6 provides a literature review. Section 7 discusses our conclusions.

2 Motivating Scenario

Nowadays, the discovery and selection of cloud applications, such as a SaaS Sugar-
CRM system, is still mainly carried out manually by consumers. It is not possible
to effectively query services offered by differentmarketplaces (e.g., AppDirect, Ap-
pcelerator, and the Service Delivery Broker from Portugal Telecom), because they
are not publicized using computer-understandable formats. Marketplaces need to
be searched manually. This is a first limitation we want to address.

After a purchase decision is made, and from the provider side, contracting and
billing is negotiated by the sales and procurement divisions, the selected cloud
application and its customization is given to an IT provider or department with-
out any formalization of the executables, technical requirements, management
best practices, and so on. Operators invest considerable efforts to learn how to
setup and manage the application. Customization is done manually and often
research or consulting is required to make a cloud solution work in a particular
environment. This manual and error-prone process is not suitable to address fast
changing markets and dynamic business requirements. Apart from solutions such
as Saleforce, Google Apps, or Microsoft Office 365, this is still the way software
is provisioned. This is the second limitation we want to address.

To solve these limitations, USDL is aiming to formalize, structure, and sim-
plify the discovery and selection of services, and TOSCA to automate their man-
agement. When used in conjunction, they can automate parts of the lifecycle of
cloud applications, namely discovery, selection, deployment, and management.

3 Modeling SugarCRM with USDL and TOSCA

In this section we provide a brief introduction to the two specification languages
we will integrate. We also use USDL to describe the SaaS SugarCRM application
from our scenario and use TOSCA to model its deployment.

3.1 USDL Overview

The Unified Service Description Language was developed in 2008 for describing
business, software, or real world services using machine-readable specifications
to make them tradable on the Internet [3]. Past efforts were concentrated on de-
veloping languages, such as WSDL, CORBA IDL, and RPC IDL, which focused
on the description of software interfaces. Nonetheless, the Internet of Services
requires services to be traded, placing emphasis on the description of business-
related aspects such as pricing, legal aspects, and service level agreements. This
was the motivation to create USDL. The initial versions of USDL were ready in
2009 [7,3]. Later, in 2011, based on the experiences gained from the first devel-
opments, a W3C Incubator group5 was created and USDL was extended. The

5 http://www.w3.org/2005/Incubator/usdl/
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extensions resulted from the experience gained in several European academic
and industrial projects (e.g., SOA4ALL, Reservoir, ServFace, Shape, etc.). In
2012, a new version named Linked USDL based on Linked Data principles [8]
and RDF was proposed. This recent version is currently being explored and eval-
uated in several research projects such as FI-Ware (smart applications), FInest
(logistics), and Value4Cloud (value-added cloud services).

Linked USDL is segmented in 5 modules. The usdl-core module models
general information such as the participants involved during provisioning and
service options such as customer support. The cost and pricing plans are mod-
eled with usdl-price. The legal terms and conditions under which services may
be consumed are modeled with usdl-legal. The module usdl-sla gathers in-
formation on the levels of service provided, e.g., availability, response time, etc.
Finally, usdl-sec models security features of a service. Due to its benefits, e.g.,
reusability of existing data models and simplicity in publishing and interlinking
services, Linked USDL was used in this research.

3.2 Describing SugarCRM with USDL

The information used to model the SaaS SugarCRM was retrieved from its web
site. A service and a vocabulary model were created. The vocabulary contained
domain dependent concepts from the field of CRM systems (e.g., taxonomies of
common installation options). Since Linked USDL only provides a generic service
description language, domain specific knowledge needs to be added to further
enrich the description of services. The excerpt from Listing 1.1 illustrates the
description of the SugarCRM service (in this paper, examples are written using
the Turtle language6).

1 <#service_SugarCRM> a usdl:Service ;

2 ...

3 dcterms:title "SugarCRM service instance"@en ;

4 usdl:hasProvider :provider_SugarCRM_Inc ;

5 usdl:hasLegalCondition :legal_SugarCRM ;

6 gr:qualitativeProductOrServiceProperty

7 crm:On_premise_or_cloud_deployment ,

8 crm:Scheduled_data_backups ,

9 crm:Social_media_integration ,

10 crm:Mobile_device_accessibility .

11 ...

Listing 1.1. SugarCRM service modeled with Linked USDL

The description starts with the identification of the provider (line 4), the legal
usage conditions (line 5), and the general properties of the service (e.g., deploy-
ment, scheduled backups, integration, and mobile accessibility). Service offerings

6 Turtle – Terse RDF Triple Language, see http://www.w3.org/TR/turtle/

http://www.w3.org/TR/turtle/
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connect services to price plans. Listing 1.2 defines four price plans (lines 4-8):
professional, corporate, enterprise, and ultimate. The professional plan
includes common features shared with the other plans such as sales force automa-
tion, marketing automation, and support automation (lines 15-20). It costs $30
per month (lines 21-25), the contract is annual and the billing is made every
month (not shown in this excerpt).

1 :offering_SugarCRM a usdl:ServiceOffering ;

2 ...

3 usdl:includes <#service_SugarCRM> ;

4 usdl:hasPricePlan

5 :pricing_SugarCRM_Professional ,

6 :pricing_SugarCRM_Corporate ,

7 :pricing_SugarCRM_Enterprise ,

8 :pricing_SugarCRM_Ultimate ;

9 usdl:hasServiceLevelProfile :slp_SugarCRM .

10 ...

11 :priceComponent_SugarCRM_Professional_General a price:PriceComponent ;

12 dcterms:title "General price"@en ;

13 dcterms:description "Fee for general usage of the instance."@en ;

14 price:isLinkedTo

15 crm:Sales_Force_Automation ,

16 crm:Support_Automation ,

17 crm:Integration_via_web_services_API ,

18 crm:Customizable_Reporting ,

19 ...

20 crm:MySQL_and_MS_SQL_server_database_support ;

21 price:hasPrice

22 [ a gr:UnitPriceSpecification ;

23 gr:hasCurrency "USD" ;

24 gr:hasCurrencyValue "30" ;

25 gr:hasUnitOfMeasurement "MON" ] .

Listing 1.2. Pricing plans for SugarCRM services

In this example, Linked USDL uses existing vocabularies such as Dublin Core
(shown in the model with :dcterms), GoodRelations (:gr), and the domain
vocabulary constructed for CRM systems (:crm).

3.3 TOSCA Overview

The Topology and Orchestration Specification for Cloud Applications [5] was
standardized to enable automated deployment and management of applications
while being portable between different cloud management environments [9]. The
management and operation of cloud applications are major concerns in enter-
prise IT. For example, the pay-as-you-go model requires fast provisioning and
management of application instances. Since these applications typically consist
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of numerous heterogenous distributed components, the management of the com-
ponents itself, the relationships among each other, and the whole application is
difficult and expensive in terms of time and money - especially when manual
work is required, e.g., deploying and executing scripts in a special order by hand
which is error prone. Thus, there is the need to automate management to de-
crease the effort and reduce the error rate. In addition, to avoid vendor lock-in,
which is a major concern of customers when talking about outsourcing and cloud
computing, there is a need to create portable applications which can be moved
between different cloud providers. The TOSCA specification is currently stan-
dardized by an OASIS Technical Commitee7 which already published a number
of community specification drafts. TOSCA is an XML-based exchange format.
The application’s architecture, the components it consists of, and the relation-
ships among them are modeled formally in a typed topology graph. Each node
and relationship defines the management operations it offers. These operations
are exposed as web services and are used to manage the individual components
and relationships on a fine-granular technical level. The overall management
functionalities such as deploying, scaling, backuping, and terminating the whole
application are modeled on a higher level of abstraction by using management
plans. Plans are implemented as workflows, e.g., in BPMN or BPEL, to benefit
from compensation, recovery, and transaction concepts [9].

TOSCA Service Archives package cloud applications with all the required
software artifacts such as installables or applications files as well as their man-
agement plans in a portable fashion. These archives can be installed in TOSCA
Runtime Environments which provide all functionalities to manage the archive
and execute management plans. This enables cloud providers to offer third party
services because management details, e.g., how to scale the application or how
security is achieved, are hidden and the archives can be treated and operated as
a self-contained black box. As the specification does not define a visual notation,
in this paper we use Vino4TOSCA [10] as a visual notation for TOSCA.

3.4 Modeling SugarCRM with TOSCA

In this section we show how the SugarCRM deployment was specified with
TOSCA, discuss different deployment options, and list possible variabilities. Fig-
ure 1 shows one possible topology of a SugarCRM deployment.

The core components of the application are the SugarCrmApp, which is a PHP
application, and the SugarCrmDb representing the database used by SugarCRM,
indicated by the MySqlDbConnection. The PHP application requires an Apache
web server including a PHP runtime, which is provided by the installed PHP
module. To provide the database, a MySQL relational database management sys-
tem (MySQLRDBMS) is used. Currently, SugarCRM also supports Microsoft SQL,
Oracle 11g, and IBM DB2 which could be used in other deployment options.
Apache and MySQL themselves must be installed on an operating system which
is in turn provided as a virtual machine image. All nodes have properties, not

7 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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Fig. 1. TOSCA Service Archive containing topology (top) and build plan (bottom) for
SugarCRM ultimate

explicitly depicted in the figure, holding state and management information of
the respective nodes. These properties are used to store information about the
application: static information such as the hardware specification of a virtual
machine, as well as runtime information such as IP-addresses. This information
is used and stored by plans during deployment, management, and termination
of the application. The fine grained decomposition into components is needed to
understand the interdependencies and variabilities exposed via Linked USDL.

One option to support different SugarCRM offerings is to use separate TOSCA
topologies with different quality of service (QoS) captured by USDL service offer-
ings. The ultimate deployment depicted in Figure 1 (upper box), for example,
hosts the web server and database on different virtual machines, whereas an
enterprise deployment can use the same virtual machine for both.

On the other hand, there are variations which do not change the structure of
the topology. For example, aspects like support options and variations impacting
how the application is technically provided. For the latter, possible configurations
offered by the VM node are the cloud provider, e.g., Amazon or Rackspace, the
physical location, e.g., US or Europe, as well as CPU power, memory size, and
hard disk capacity. Beside nodes, it is also possible to configure relations. For
example, to tackle security issues, the database connection may be encrypted.

Management plans read andwrite properties which hold runtime information of
nodes and relationships. TOSCA designates one plan as build plan, which
deploys and initializes the service. Figure 1 (lower box) shows a simplified exam-
ple of a build plan which sets up the ultimate version of SugarCRM based on two
virtual machines. A real executable plan needs additional activities and structural
components for data handling, compensation, and recovery mechanisms. The
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shown plan sets up the two infrastructure stacks in parallel starting from the bot-
tom by calling management operations provided by the nodes (Figure 1 depicts
only three of these calls for simplicity reasons). After stacks are instantiated, the
database connection is established and the application is available.

4 USDL and TOSCA Interoperability

Our study on USDL and TOSCA interoperability is timely and relevant because
despite standardization efforts clouds may develop in a way that lacks interoper-
ability, portability, and reversibility, all crucial for the avoidance of lock-in. Our
approach connects in a best of breed manner two promising standardization ef-
forts, focusing on different aspects, and proposes an end to end solution for cloud
services including modeling, discovery, selection, deployment, and management.

A simple solution to integrate USDL and TOSCA consists in establishing a
static link between service descriptions and their corresponding archives.Nonethe-
less, since this approach is strongly coupled it would not be able to handle the
dynamics of a global service distribution network. For example, what would hap-
pen if the TOSCA descriptor associated with a USDL service description would
no longer be valid?What if the deployment provider has ceased its operations and
transferred its obligations to, presumably, some other provider whichwill still han-
dle the original function? How should the request be handled?

4.1 Architectural Decisions

Engineering a platform to integrate service descriptions with service deployments
is a major undertaking [6]. We require an architecture that enables a simple
transmission of service requests and deployment information between customers
and providers via marketplaces; which handles adding or removing marketplaces
and providers in a loosely coupled manner; which uses a standard data repre-
sentation and querying format to ease information exchange and enable inter-
operability; and which can rely on existing applications, tools and technologies.
When examining theoretical and technological advancements to serve as a fun-
damental building block it becomes clear that the World-Wide Web combined
with semantic web technologies is a potential candidate. It is distributed, scal-
able, reliable, extensible, simple, and equitable [11]. Therefore, the integration
platform developed was constructed based on three main underlying principles:

1. Global service identification and service description access,
2. Intelligent routing of service requests, and
3. Dynamic binding of deployment descriptors.

The description of cloud services using Linked USDL provides a global service
identification mechanism by using HTTP URIs. It also provides a global, stan-
dard, and uniform data access [12] to service descriptions by using HTTP URLs
and RDF. In contrast to other approaches, e.g., APIs provided as REST or
WS-* endpoints [13], an uniform data access enables a simpler interoperability
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and integration of the marketplace, containing service descriptions, and service
providers’ platforms responsible for SaaS deployment and management.

The routing of service requests from marketplaces to providers is achieved
using an intelligent content-based routing [14]. The analysis of Linked USDL
descriptions is implemented through SPARQL and can also make use of RDF-
based reasoning engines (e.g., Jena, Pellet, FaCT). Their use for content-based
routing enables a more flexible routing mechanism compared with web APIs,
because full remote access and querying of the service descriptions is possible.
Furthermore, the use of a routing mechanism decouples space and time between
marketplaces and providers.

Cloud providers use a publish-subscribe pattern [15] to establish a dynamic
binding of deployment descriptors with Linked USDL service offerings. This en-
ables cloud providers to quickly adapt to peak demand by scaling the number of
servers which handle deployment requests using TOSCA Runtime Environments.

These architectural considerations are evaluated in Section 5 with the imple-
mentation of the ServIce Offering and Provisioning Platform (SIOPP).

4.2 Global Service Identification and Description Access

Cloud applications, such as the SugarCRM of our scenario, can be advertised
in marketplaces [3] (e.g., SAP Service marketplace, Salesforce.com, and AppDi-
rect.com), or in any other system answering to HTTP URIs requests (e.g., the
provider’s web sites), which enables consumers to browse through various offer-
ings. A marketplace, or information system, is said to be USDL-compliant if all
service offerings are modeled with Linked USDL, and are externally visible and
accessible via HTTP URIs. Since Linked USDL relies on linked data principles,
two important features are inherited:

1. The use of HTTP URIs provides a simple way to create unique global identi-
fiers for services. Compared to, e.g., a universally unique identifier (UUID),
Linked USDL URIs are more adequate to service distribution networks since
they are managed locally by service providers following a process similar to
the domain name system (DNS).

2. The same HTTP URI, which provides a global unique identifier for a ser-
vice, also serves as endpoint to provide uniform data access to the service
description. A Linked USDL URI can be used by, e.g., RDF browsers, RDF
search engines, and web query agents looking for cloud service descriptions.

When a suitable Linked USDL HTTP URI has been selected for purchase
(for example, our SugarCRM application), the customer can customize the ser-
vice, for example, by selecting the pricing plan which is most suitable to his
needs. Assuming that the ultimate plan is selected, the marketplace sends a
service request for routing. The service includes the URI and an optional part
(the customization string), separated by a question mark (“?”), that contains
customization information. The syntax is a sequence of <key>=<value> pairs
separated by a ampersand (“&”). Both, key and value, are URIs referencing
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semantic concepts defined within the Linked USDL service description. For
example, the URI http://rdfs.genssiz.org/SugarCRM?pricePlan=pricing
SugarCRM Ultimate in which the key pricePlan and value pricing SugarCRM

Ultimate are concepts defined within the Linked USDL description of the Sug-
arCRM application (in this example, the full URI was omitted to make the
notation more compact). The customization string adopts the same structure as
query strings, a recommendation of the W3C.

4.3 Intelligent Routing of Service Requests

Based on the global service identification and description access, the SIOPP
platform relies on a content-based routing [14] strategy to forward service re-
quests, generated by service marketplaces, to TOSCA deployment providers.
The routers examine the content of Linked USDL service descriptions, apply
SPARQL queries and reasoning rules—providing some degree of intelligence
within the router—to determine the providers who are able to provide the re-
spective service. The mapping of Linked USDL URIs, pointing to an offering
with the application provisioned by TOSCA, is realized by the distributed rout-
ing logic depicted in Figure 2. The proposed mechanism is designed with three
routing layers: (i) the Global Routing Layer (GRL), (ii) the Local Routing Layer
(LRL), (iii) and the TOSCA Routing Layer (TRL).

The Global Routing Layer uses a routing table to map Linked USDL URIs,
describing the high level requirements for the application provisioning, such as
pricing model, to providers which are able to provision the application accord-
ingly. The GRL receives an USDL URI from a marketplace, looks up appropriate
providers and selects one of them. This selection may take into consideration
further conditions defined by the user such as pricing, payment method, or secu-
rity requirements. However, these aspects are out of scope for this paper. Each
provider is referenced by an endpoint implementing an interface used by the
GRL to pass requests to the Local Routing Layer of the respective provider in
order to trigger the provisioning of the application.

The Local Routing Layer uses the Linked USDLURI and a (local) routing table
to select the correspondingTOSCAarchive andTOSCAcontainer,whichbrings us
to theTOSCARoutingLayer.The installations are referencedby aTOSCAservice
id which can be used to trigger the provisioning of the service by the Local Rout-
ing Layer via the TOSCA-Runtime Environment. In addition, the routing table
stores the input message used to invoke the build plan. This input message con-
tains provider-specific information, for example, IP ranges or credentials, as well
as field to pass the Linked USDL URI to the build plan. The plan may use the URI
to configure the application based on the information represented by the URI or,
in addition, may inspect the Linked USDL service description to gather more in-
formation, e.g., details of the selected price plan. Thus, the third TOSCARouting
Layer executes and configures the actual provisioning of the service.

http://rdfs.genssiz.org/SugarCRM?pricePlan=pricing_SugarCRM_Ultimate
http://rdfs.genssiz.org/SugarCRM?pricePlan=pricing_SugarCRM_Ultimate
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Fig. 2. Intelligent content-based routing mechanism of SIOPP

Listing 1.3 shows an example of an input message used by the build plan to
deploy SugarCRM on Amazon EC2 (described in Section 3.4). The message con-
tains credentials of the Amazon account to be used (line 2 and 3), the geographic
region where the virtual machines should be located (line 4), and a pointer to
the USDL offering (line 5). The USDL URI is used by the plan to query the
Linked USDL offering by using SPARQL and adjust the deployment. In our
prototype, deciding between the deployment options enterprise or ultimate
is done based on the selected USDL pricing plan.

1 <BuildSugarCrmUltimateRequest>

2 <AmazonAccessKey>-key-</AmazonAccessKey>

3 <AmazonSecretKey>-secret-</AmazonSecretKey>

4 <EC2Endpoint>ec2.eu-west-1.amazonaws.com</EC2Endpoint>

5 <USDLURI>http://rdfs.genssiz.org/SugarCRM?pricePlan=

pricing_SugarCRM_Ultimate</USDLURI>

6 </BuildSugarCrmUltimateRequest>

Listing 1.3. SugarCRM build plan input message

Listing 1.4 shows the SPARQL query used by the build plan to inquire about
the options which are attached to the pricing plan included by the (customized)
USDL URI. The options are then installed automatically.
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1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX usdl: <http://www.linked-usdl.org/ns/usdl-core#>

4 PREFIX price: <http://www.linked-usdl.org/ns/usdl-pricing#>

5 select ?option

6 where {

7 pricePlan + price:hasPriceComponent ?priceComponent .

8 ?priceComponent price:isLinkedTo ?option . }

Listing 1.4. The SPARQL query issued by the build plan

The use of Linked USDL enables the content-based routing to be (1) intelligent
and (2) adaptable. First, inference engines can be used to derive additional infor-
mation not explicitly contained in a service description. For example, the Similar-
ity Ontology (SO)[16] can be used to determine if the description of a service to
be routed is so:similar or so:related to some service target. The use of transi-
tive properties, such as so:matches, can be explored to infer implicit routing rules.
Second, an adaptable content-based routing is achieved. It is possible to extend ser-
vice descriptions with, for example, domain-dependent information as done in the
field of logistics with the FInest project8; or enhance service descriptions with ex-
ternal information sources, for example, using dbpedia, YAGO, or freebase9. This
contrasts to existing approacheswhichrelyonclosed schemas likeWSDL.The rout-
ing mechanism works with the extensibility of Linked USDL and is able to pro-
cess extended service descriptions. The modeling of our SaaS SugarCRM included
domain-dependent vocabulary from the CRM field (see Section 3.2). Nonetheless,
the evaluation of the impact of additional domain-dependent information on rout-
ing was out of scope for this paper.

4.4 Dynamic Binding of Deployment Descriptors

The binding of Linked USDL service offerings to TOSCA service deployments is
done ina loosely coupledmanner usingTOSCAdeploymentdescriptors.ATOSCA
deployment descriptor is the combination of (i) a TOSCA Service Archive identi-
fier, (ii) the endpoint of its build plan, and (iii) the respective input message for the
build plan. The provider’s TOSCARuntime Environment is able to automatically
process the TOSCA deployment descriptors stored in the routing table of the Lo-
cal Routing Layer. The Local Routing Layer maps the USDL URIs, passed by the
Global Routing Layer to the provider, to the corresponding TOSCA deployment
descriptors solely based on this URI. Our approach uses the publish-subscribe pat-
tern which enables providers to dynamically offer their provisioning capabilities
to marketplaces. This design achieves advantages in resource management, work-
load distribution, andmaintenance operations. For example, if a service instance is
slowed downby a high request rate, the provider is able to instantiate and subscribe
a second instance to distribute the workload.
8 http://finest-ppp.eu/
9 http://dbpedia.org; www.mpi-inf.mpg.de/yago-naga; www.freebase.com

http://finest-ppp.eu/
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5 Evaluation

An evaluation was conducted to assert the feasibility, performance, separation
of concerns, and limitations of the prototype developed:

Feasibility. The integration of USDL and TOSCA required a loosely coupled
platform to account for the dynamic nature of service advertisements and ser-
vice provisioning. Three main challenges emerged during the construction of the
SIOPP prototype: (i) global service identification and remote description access,
(ii) intelligent routing of service requests, (iii) and dynamic binding of deploy-
ment descriptors. We were able to exploit USDL features (inherited from linked
data principles) to achieve an unique service identification schema using Linked
USDL URIs and a uniform data access [12] to service descriptions using Linked
USDL HTTP URIs. In contrast to using, e.g., web APIs, it enabled a simpler
integration of the marketplace and service providers’ platforms responsible for
service deployment and management. The use of a decentralized management of
unique service identifiers was a scalable solution for the Internet of services. The
use of SPARQL for the content-based routing [14] of service requests enabled a
more flexible querying mechanism when compared, here again, with the access to
web APIs to retrieve service data, since a full access to the service specifications
is possible remotely. The dynamic association of a specific TOSCA deployment
descriptor with a USDL service offering was achieved using a publish-subscribe
pattern [15]. This enables cloud providers to quickly adapt to peak demand by
distributing service requests to different TOSCA Runtime Environments. Com-
pared to other approaches, e.g., which use business process management or in-
tegration by web services, the platform achieved a higher degree of decoupling,
certainly more suitable for large scale deployments.

Performance. Regardless of using SIOPP or not, the application has to be setup
using a build plan. Thus, we measured the performance of each component sepa-
rately, to analyze the added runtime.For theGRLweused a hashtablewith 500,000
entries and looked up 5,000 entries with a total lookup time of 3ms. Tomeasure the
LRL we used a hashtable with 10,000 entries and looked up 1,000 entries which re-
sulted in a total lookup time of 2ms. The measurement setting was Win7-64bit,
JRE 1.7, Intel i5-2410M, 2,3GHz. The build plan was adapted to return imme-
diately after executing the SPARQL query, i.e., before the actual deployment at
Amazon started, has an average runtime of 289ms (σ = 76). The runtime of the
plan deploying SugarCRM varies between 4 and 7 minutes, depending on the pro-
visioning time of the VMs at Amazon EC2. Thus, the overhead caused by SIOPP,
even for peak demands, is negligible in our scenario.

Separation of Concerns. The distributed multi-layer routing logic enables the
separation of concerns: The GRL reflects high level information, e.g., the global
routing table may store information about the country of the provider for legal
aspects. The LRL handles lower level aspects such as load balancing information,
e.g., new service instances can be registered in the local routing table for peak
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demands. The TRL enables, for example, implementing security aspects directly
in management plans. This separation allows providers to focus on configuration
and subscription and to design their own strategies based on individual aspects
such as pricing. There is no need to understand the application’s management.

Limitations. Since our routing approach has only three fixed routing compo-
nents, it is not scalable for a global operation. One way to address this limita-
tion is to adopt a peer-to-peer architecture using an overlay network organized
with, e.g., the Simple Knowledge Organization System (SKOS). The network
can be partitioned according to service domains (e.g., healthcare, finance, and
logistics). Requests can be routed from domain to domain/subdomains linked
using SKOS properties (e.g., skos:narrower and skos:member). The customiza-
tion string (see Section 4.2), works well with simple customization. However, it
is inadequate for condition-based based customization, i.e. if logical conditions
need to be sent along with service requests. Also, associating USDL URIs with
concrete input values for build plans has been found to be difficult if there is no
description on how the values affect the deployment.

6 Related Work

While several researchers have studied different architectures for marketplaces
(e.g., [17,18]), no known studies have been focused specifically on how cloud ser-
vice offerings can be connected to their automated provisioning. Furthermore,
except for a detailed study on cloud computing standardization efforts [19], re-
search on interoperability between cloud standards has been overlooked. Our
efforts to integrate service specifications and standards was first reported by
Cardoso et al. [20]. We concluded that the use of model-driven approaches to
transform models was too complex for large scale projects. Therefore, in this
paper we based our approach on Linked USDL [6] to achieve a more loosely
coupled and simpler alternative.

Pedrinaci et al. [21] propose the iServe platform to publish linked services,
which is a subclass of Linked USDL services representing WSDL, RESTful,
OWL-S, and WSMO services. Kirschnick et al. [22] reuse existing solutions to
install and configure software to cloud environments. In both of these works, the
question of how service offerings can trigger the remote deployment of a service
was not addressed.

Jayasena et al. [23] integrate different financial standards, such as IFX and
SWIFT, with an ontology to resolve semantic heterogeneity. This approach works
well when the standards being integrated represent similar information. Cardoso et
al. [24] follow a similar solution and add the notion of dynamic mappings to estab-
lish relations between different specifications. Nonetheless, both achieve limited
results when overlap information is small, which is the case of USDL and TOSCA.

While these works use a bottom-up approach, other research took a top-
down approach. For example, the Open Services for Lifecycle Collaboration
(OSLC) [25] community created specifications to prescribe how tools (e.g., re-
quirements tools, change management tools, testing tools, and so forth) should
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be implemented and integrated to exchange data. While the approach has shown
to be extremely successful, it cannot be applied to the problem we tackle since
the specifications we integrate already exist and were developed by different
organizations [19].

7 Conclusions

The emergence of cloud standards and specifications, such as USDL and TOSCA,
brings the necessity to evaluate to which extend they are interoperable. In the
presented approach we developed a prototypical platform to integrate both speci-
fications by modeling the description and deployment of a commercial SaaS appli-
cation: SugarCRM. The prototyping process enabled us to identify the challenges
and limitations of making USDL and TOSCA interoperable. Important findings
indicate that the use of a global service identification and description access en-
ables a ‘lightweight’ integration without having the need to agree on proprietary
web APIs. The multi-level and intelligent routing of service requests allows mak-
ing routing decisions on different levels of granularity (e.g., legal, pricing, and se-
curity). The routing based on Linked USDL URIs achieves a high performance
since analysis can be made, in many scenarios, only at the URI level. For a more
advanced routing, Linked USDL descriptions can be remotely accessed. Finally,
the dynamic binding of deployment descriptors with services enables providers to
react to changing demands and workloads in a flexible manner.
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