
Masters’ Degree in Informatics Engineering
Dissertation

LaNDLESS
Integrating Linked Data with Linked Services

July 2, 2013

Ricardo Lopes
rplopes@student.dei.uc.pt

Advisor

Jorge Cardoso

Abstract

Services have grown to become the strongest and most influential economic

sector of our society. Paradoxically, they are also the least studied and least

understood. It is thus of utmost importance to develop scientific research towards

better understanding of services.

Some efforts have been done in the past to conceive models for studying

services. However, those models usually lack the completeness we need for a

full study. Moreover, because those models are typically from an economic or

managerial background, they are not designed with data computation in mind

and thus fail to provide the necessary foundations for a deeper study and

automated reasoning.

The Unified Service Description Language (USDL) tries to fill that gap by

providing a computer language for describing services. However, due to its

complexity and lack of extensibility, its adoption is still not impressive. Linked

USDL tries to overcome those flaws by providing a simpler model and by using

the Semantic Web technologies and Linked Data. It is, however, a model for

describing services in a customer-oriented view. If we seek to obtain a better

understanding of services, we must focus on the full length of a service, specially

in internal views such as managerial and operational.

In order to meet those requirements and thus advance science’s understanding

of services we propose the model Linked Service Systems for USDL (LSS-USDL).

This model builds upon the previous service model approaches and on the USDL

research efforts to enable a complete description of services in a machine-readable

notation. We also propose a tool set to demonstrate the applicability and

usefulness of this model.

Keywords: Service, Service system, Service model, Business model, Service

description, Semantic Web, Linked Data, Linked Services, RDF, USDL, Linked

USDL.

iii

Acknowledgements

One thing I learned while working in this thesis is that scientific research is

hard. It requires method, perseverance and a sharp focus to stay on the right

path. Therefore, this has been a challenging but very enriching experience for

me. Moreover, I am grateful for the help of many people who have contributed

to some extent to the outcome of this research work.

Firstly, I want to thank my advisor Jorge Cardoso for all the guidance

throughout the year, for the feedback to my work artifacts and also for pro-

viding all means to conduct a strong research effort, such as showing drafts

of unpublished work of the USDL research and arranging meetings with other

researchers.

Furthermore, I would also like to thank the rest of the Genssiz research

group for all the insightful discussions and the useful feedback provided.

In addition, I want to thank my parents Isabel Pinto and Sérgio Lopes for

providing me everything I needed throughout the years so that I could do this

thesis, and my girlfriend Tânia Vargas for her patience and understanding and

all her support.

Lastly, I would also like to thank my Master’s degree colleagues for the

companionship and shared knowledge, my friends and all other people that had

any direct or indirect impact in the outcome of this thesis.

Ricardo Lopes

v

Contents

Abstract ii

Acknowledgements iv

List of Tables xi

List of Figures xiii

List of Acronyms xv

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 5

1.3 Objectives and challenges . 7

1.4 Approach . 9

1.5 Document structure . 10

2 State-of-the-art 11

2.1 Service models overview . 11

2.2 Framework attributes . 13

2.2.1 Goals . 13

2.2.2 Stakeholders . 14

2.2.3 Processes . 14

2.2.4 Inputs . 14

2.2.5 Outputs . 15

2.2.6 Resources . 15

2.2.7 Measures . 15

2.2.8 Legal . 16

2.2.9 Financial . 16

2.3 Service model approaches . 16

2.3.1 Six generic elements of business models 16

2.3.2 Business model seven sub-models 18

2.3.3 CAIOPHYKE . 18

2.3.4 e3service . 20

vii

CONTENTS

2.3.5 Ten foundational service science concepts 21

2.3.6 Business Model Canvas . 22

2.3.7 Extended Business Model Canvas for Co-Creation and Part-

nering . 24

2.3.8 Adapted Business Model Canvas 25

2.4 Technical service descriptions . 27

2.4.1 *-USDL . 27

2.4.2 WSDL . 28

2.4.3 WSMO . 29

2.4.4 OWL-S . 29

2.4.5 SWSF . 30

3 Service system modeling 31

3.1 Concepts and building blocks . 31

3.2 Approach . 32

3.3 The LSS-USDL model . 34

4 Tool support 39

4.1 Motivation . 39

4.2 Graphical LSS-USDL editor . 40

4.2.1 User accounts management 41

4.2.2 Entities management . 42

4.2.3 Connection to the LDC . 43

4.2.4 Service systems visualization 44

4.2.5 Import/Export from/to RDF files 45

4.3 Linked USDL export/import tool 46

4.3.1 Mapping between the two models 47

4.3.2 Import/Export from/to RDF files 48

5 Evaluation 49

5.1 Evaluation approach . 49

5.2 Express mail delivery . 50

5.3 Bookstore kiosk . 52

5.4 SaaS webapp . 55

5.5 Final remarks . 57

6 Conclusions 59

6.1 Summary . 59

6.2 Findings . 60

6.3 Implication for society . 61

viii

CONTENTS

6.4 Future work . 61

Bibliography 63

A Schedule 73

B Project documentation 77

B.1 LSS-USDL . 77

B.1.1 Model Explanation . 78

B.1.2 Getting Started Tutorial . 80

B.1.3 Useful links . 83

B.2 LSS-USDL Editor . 83

B.2.1 How to set up . 83

B.2.2 Useful links . 85

ix

List of Tables

2.1 Service models classification . 12

2.2 Service models attributes categorization 13

2.3 Attribute analysis of the six generic elements of business models . 17

2.4 Attribute analysis of the Business Model seven sub-models 18

2.5 Attribute analysis of CAIOPHYKE 19

2.6 Attribute analysis of the e3service needs ontology 21

2.7 Attribute analysis of the ten foundational service science concepts 22

2.8 Attribute analysis of the Business Model Canvas 23

2.9 Attribute analysis of the Extended Business Model Canvas for

Co-Creation and Partnering . 25

2.10 Attribute analysis of the Adapted Business Model Canvas 26

4.1 Mapping of LSS-USDL elements to Linked-USDL elements 47

xi

List of Figures

1.1 Diagram explaining the context of business models, service systems,

service models, process models and service descriptions 4

1.2 Business models, service models and process models compared by

level of abstraction . 5

2.1 Six generic elements of business models 17

2.2 CAIOPHYKE table . 20

2.3 e3service needs ontology . 21

2.4 Ten foundational concepts of service science diagram 22

2.5 Business Model Canvas . 24

2.6 Extended Business Model Canvas for Co-Creation and Partnership 25

2.7 Adapted Business Model Canvas . 26

2.8 USDL dependencies between modules 28

2.9 OWL-S top level . 30

3.1 6-point interaction star model . 33

3.2 Extensions to interaction and resource entities 34

3.3 LSS-USDL logo . 34

3.4 Complete service model . 35

4.1 Architecture for the graphical editor tool 41

4.2 Register new account screen and account management menu 41

4.3 Editing a resource entity . 42

4.4 Accessing the Geonames Linked Data 43

4.5 The extended service blueprint view and filters list 44

4.6 File import interface after clicking “Import from file” button . . . 45

4.7 Export to Linked USDL added to the export options 45

4.8 Architecture for the Linked USDL export/import tool 47

5.1 Express mail delivery original service blueprint 50

5.2 Extended service blueprint of the express mail delivery use case . 52

5.3 Customer interactions in the bookstore kiosk original service blueprint 53

5.4 Employee interactions in the bookstore kiosk original service blueprint 54

5.5 Extended service blueprint of the bookstore kiosk use case 55

5.6 SaaS webapp klinkr original service blueprint 56

xiii

LIST OF FIGURES

5.7 Extended service blueprint of the SaaS webapp use case 57

A.1 Gantt diagram of the project planning 74

A.2 Gantt diagram of the actual execution of the tasks 76

xiv

List of Acronyms

BPMN Business Process Modeling Language

IEEE Institute of Electrical and Electronics Engineers

ITIL Information Technology Infrastructure Library

IoS Internet of Services

LDC Linked Data Cloud

LOS Linked Open Services

MVC Model-View-Controller

OWL Ontology Web Language

OWL-S Semantic Markup for Web Language

RDF Resource Description Framework

SaaS Software as a Service

SKOS Simple Knowledge Organization System

SWSF Semantic Web Services Framework

UML Unified Modeling Language

USDL Unified Service Description Language

W3C World Wide Web Consortium

WSDL Web Services Description Language

WSMO Web Service Modeling Ontology

xv

1
Introduction

This chapter explains the background and motivation of this thesis and describes

its goals, challenges and approaches.

The first section explains the background of this thesis, explaining the

relevance of the field and describing its core concepts. The second section

discusses the motivation to develop the proposed solution and describes that

solution. The third section presents a list of goals and challenges that must be

addressed. The fourth section proposes a set of approaches to solve the problem.

Finally, the fifth section briefly explains the structure of the document.

1.1 Background

We live in a society of services. Although the service sector was initially con-

sidered a residual economic category next to the agriculture and manufacturing

sectors [38], in the last three decades it has grown to become the largest part

of most industrialized economies [85], now contributing to around 70% of the

total GDP1 of Western Europe’s economies [56]. As of 2006, Germany has

experienced a service sector growth of 44% in 25 years, Russia experienced 38%,

Japan experienced 40% and China reached a growth of 191% [57]. It is, then,

by far the strongest economic growth driver in the world [8].

However, despite the soaring importance of this economic sector to society,

scientific understanding of modern services is still rudimentary [21]. Moreover,

there is still no widely accepted definition of service [85], and its meanings might

differ and generate inconsistencies not only across disciplines, but also within

them [32].

In order to better understand the scope of this thesis, it is then necessary

to disambiguate the meaning of service and formalize a definition that we can

use from now on.

1Gross Domestic Product

1

CHAPTER 1. INTRODUCTION

The term “service” was first used in the 1930s by the U.S. Department of

Commerce’s Standard Industrial Classification to denote the residual economic

activities that did not fit into agriculture and manufacturing [21]. Services were

called “unproductive labor” because their labor did not result in physical goods,

contrasting with agriculture and manufacturing, which resulted in the production

of physical goods and were therefore called “productive labor” [57]. However,

due to the service sector’s growth, we shifted from that Goods-Dominant (GD)

logic to a Service-Dominant (SD) logic, focusing on the creation of value rather

than the exchange of goods [92].

According to the ITIL2 library, “a ’service’ is a means of delivering value

to customers by facilitating outcomes customers want to achieve without the

ownership of specific costs and risks” [71]. The W3C3 defines service as “...

an abstract resource that represents capability of performing tasks that form a

coherent functionality from the point of view of provider entities and requester

entities. To be used, a service must be realized by a concrete provider agent” [89].

Hill states that “a service may be defined as a change in the condition of a

person, or a good belonging to some economic unit, with the prior agreement

of the former person or economic unit” [43]. Based on the previous definitions

and on more opinions from different authors [5][31][32][58][85], we can define

service as follows:

Definition 1. A service is a previously agreed exchange of competences and

knowledge between a provider and a customer in order to provide value to both

parties.

When studying services, we are faced with other keywords that need clar-

ification to develop a better understanding of this area of study. In order

to do so, we need to formulate unambiguous definitions about the most rele-

vant concepts, namely “service system”, “service model”, “service architecture”,

“business model” and “service description”.

Service system is described in the literature as “... a system comprised of

a facilitator and appraiser systems for generating value through the provision

and consumption of services” [65], “... complex adaptive systems made up of

people, (...) dynamic and open, rather than simple and optimized” [85], among

other definitions [5][26][37][58][66]. Based on those descriptions, we can reach

the following definition of service system:

Definition 2. A service system is a collection of resources, stakeholders, processes

and other service assets that, combined, enable value co-creation between producer

and consumer. It can thus be seen as a schema for services.

2Information Technology Infrastructure Library: http://www.itil-officialsite.com
3World Wide Web Consortium: http://www.w3.org

2

1.1. BACKGROUND

Models “... help us by letting us work at a higher level of abstraction

(...) by hiding or masking details, bringing out the big picture, or by focusing

on different aspects of the prototype” [72]. Their essence is abstraction: “...

the removal of fickle and distracting detail of implementation technologies as

well as the use of concepts that allow more direct expression of phenomena in

the problem domain. (...) the only effective means that we have of dealing

with complexity that overwhelms our cognitive capacities” [80]. Crossing these

statements with others in the literature [45][82] and with the previously derived

service definition, we get the following description of service model:

Definition 3. A service model is an abstraction of a service system that highlights

and categorizes the service’s core structure and interactions, hiding its complex

nature from who does not need to know it.

The term architecture is defined by IEEE4 14715 as “... the fundamental

organization of a system embodied in its components, their relationships to each

other and to the environment, and the principles guiding its design and evolu-

tion” [60]. Zachman, while explaining his framework for enterprise architecture,

defines architecture as “... that set of design artifacts, or descriptive represen-

tations, that are relevant for describing an object such that it can be produced

to requirements (quality) as well as maintained over the period of its useful

life (change)” [90]. Cardoso et al. states that service architectures “... look

into the organization of software-based services, how they are connected, and

what service information is exchanged between consumers and providers” [18].

Building on top of the our service definition and these architecture definitions

(including Kruchten’s contribution [53]), we can define service architecture as:

Definition 4. Service architecture is the set of rules and guidelines for the

components, relationships and interfaces of the structural elements of a software-

based service that guides the organization of that service.

Business model is defined by Timmers as “... an architecture for the product,

service and information flows, including a description of the various business

actors and their roles; and a description of the potential benefits for the various

business actors; and a description of the sources of revenues” [86]. In their

book about the Business Model Canvas, Osterwalder and Pigneur state that “a

business model describes the rationale of how an organization creates, delivers,

and captures value” [74]. With the help of these descriptions and more found

in the literature [3][28][59][75], we reach the following definition:

Definition 5. A business model is a conceptual representation of the business

of a certain organization, intended to describe its stakeholders, interactions and

4Institute of Electrical and Electronics Engineers
5http://www.iso-architecture.org/ieee-1471/index.html

3

CHAPTER 1. INTRODUCTION

value propositions and explain how the organization meets customer goals and

how it makes profit.

A WSDL6 service description “... indicates how potential clients are intended

to interact with the described service. It represents an assertion that the

described service fully implements and conforms to what the WSDL 2.0 document

describes” [22]. Oberle et al. argue that “Information systems such as a service

marketplace will manage descriptions of a service and not the service itself.

The service itself is an event (...) that can be executed arbitrary times used

by different consumers” [70]. Cardoso et al. state that service descriptions “...

bring various ways to describe services’ interfaces using schema, models and

semantics” [18]. Hence, we can define service description as follows:

Definition 6. A service description is a static descriptive representation of a

service system, used to educate the different stakeholders about its properties and

interactions, that represents the service as a whole, and not specific instances or

occurrences.

Figure 1.1 builds on the concepts defined above to explain the scope of a

service model like what we intend to achieve.

Figure 1.1: Diagram explaining the context of business models, service systems,

service models, process models and service descriptions

If we look back at the definitions of business model and service model, we

see that they are different models that serve different goals. While business

models have a greater focus on a company strategy and long-term goals, service

models put a bigger focus on the company’s operations and their goals and

outcomes. This means that, hierarchically, business models provide a higher

6Web Services Description Language

4

1.2. MOTIVATION

level of abstraction. A business model may contain one or more service models.

Following this reasoning, we may also identify process models (such as BPMN7,

Petri Nets, UML8 State Diagrams and so forth) as models focusing on enabling

a company’s process operations, thus acting at a lower level of abstraction than

service models. A service model may contain one or more process models. This

hierarchy is resumed in Figure 1.2.

Figure 1.2: Business models, service models and process models compared by

level of abstraction

Both business models and process models have been intensively studied in

the past. Service models, however, only recently have began to draw attention

of researchers. As seen in Figure 1.2, a deeper study of service models is thus

very relevant in order to fill the gap of conceptual representation between the

long-term strategic vision of business models and the short-term operational

vision of process models.

The definitions we discussed help us understand this thesis’s context and

raise some interesting questions and conclusions that are further explored in the

next sections.

1.2 Motivation

As we have seen in the previous section, services have become the most influential

economic sector of our society. Yet, few studies are found in the literature that

present service models or frameworks for better organization management. We

may find services everywhere but, nevertheless, most of them are not properly

documented or modeled.

7Business Process Modeling Notation
8Unified Modeling Language

5

CHAPTER 1. INTRODUCTION

One of the original goals of USDL9 was to address this issue and provide

a service description language for managers to formalize their organization’s

services in a standardized format. However, USDL is limited to the description

of the service’s customer interactions, so a complete service system description

is still not possible. In other words, USDL treats a service as a blackbox where

internal details are not known.

A model that could formalize and describe the whole service system operations

would thus facilitate managers’ transition from the currently chaotic service

management to a formalized one. This would result in many benefits, such as:

• Documentation: Service systems would be modeled in a machine-readable

language, which would make it possible to generate service descriptions for

people to analyze and better understand it. This documentation generation

facilitates staff formation, customers knowledge about the service offerings

and so forth.

• Transparency: A whitebox service system description would let stakehold-

ers better understand what is happening. This would prove organizations’

credibility and sustainability and would let foundations and governments

clarify where is people’s money being spent and justify potential decisions.

• Bottlenecks and fail points identification: Only after modeling a

complete service system it is possible to get a big picture view while also

being able to look at all the details. If a service is well described, it

should be possible to identify potential drawbacks such as bottlenecks and

fail points and study solutions to overcome it.

• Automation: If a service system is fully modeled in a machine-readable

language, then all requirements are met for an automation tool to read

that model and dispatch worker processes for certain inputs.

• Simulation: Since we can model the full length of a service system in a

machine-readable language, it is possible to conduct service system behavior

simulations to aid managerial and operational decisions. Such simulations

could be executed using the principles of System Dynamics [6].

• Integration: USDL may already have some of the aforementioned bene-

fits, but lacks good integration of services with data and external services.

Linked USDL10 tries to solve that problem by using Semantic Web tech-

nologies and integration with Linked Data11, but it cannot fully address

that problem because it still describes the service system as a blackbox.

9Unified Service Description Language (USDL
10http://www.linked-usdl.org
11http://linkeddata.org

6

1.3. OBJECTIVES AND CHALLENGES

A whitebox service model, however, would be able to fully integrate with

other data and services because it can provide the description of all its

components.

• Discovery: One of the goals of the Internet of Services (IoS)12 and USDL

is to be able to describe services in such a standardized way that it

might be possible to browse them in a generic online services marketplace.

However, USDL can only provide a single service description, since it only

models customer interactions. In other words, one service system generates

only one service description, and thus it is not possible to generate a view

or description for a manager with specific skills and another for an engineer

with a different set of skills and interests. A complete service system model

would be able to generate dynamic service descriptions depending on what

is relevant to display. Those service descriptions could then be aggregated

in service marketplaces for easier discovery and comparisons [17].

Finally, a whitebox service system modeling tool could be able to generate

different service descriptions based on who is accessing it and what goals is the

description trying to address at that moment. As such, customers could interact

with a service description of customer interactions (such as USDL), staff could

interact with a service description for internal operations and so forth. Those

would be different views of the same service system. Such an achievement might

prove to be a very important advancement in the field, potentially putting

previous service models that generate a single service description to obsolesce.

1.3 Objectives and challenges

Since existing models that describe service systems typically follow a blackbox

approach, in this thesis we take the challenge of defining a model to describe

a service system using a whitebox approach (i.e. also providing an internal

view). In order to do so, we discuss the specification, creation and validation of

such a model and its associated toolset. Such toolset should be designed using

Semantic Web technologies, since they facilitate interoperability, which is one of

the service information challenges pointed out by Oberle et al. [70].

In addition to the Semantic Web technologies, it should also include Linked

Data principles and practices. This lets us reuse existing LDC13 vocabularies

(thus maximizing compatibility and reusability and minimizing engineering ef-

forts), making use of the recent trend towards organizations and governments

12http://internet-of-services.com
13Linked Data Cloud

7

CHAPTER 1. INTRODUCTION

publishing data on the web [83], and facilitates the automatic computer pro-

cessing of data [18]. The use of these technologies enables the open exposure

of service features, resulting in LOS14 [68].

The objectives of this project are thus presented below, along with consid-

erations about their main challenges.

1. Define a service system model: The main objective with this work is

to define a machine-readable model that describes general service systems.

The biggest challenge is the research area of that goal, services science [21],

that requires knowledge on disciplines such as economics, law, marketing,

management sciences, industrial and systems engineering, computer science,

information systems and so on [84]. Another challenge is the use of

Semantic Web technologies and Linked Data in order to facilitate computer

reasoning and data interoperability.

2. Develop a graphical modeling tool: In order for this model to be

accepted by managers and other non-technical service system modelers it

must present an interface they can understand. Hence, one of the goals

is to develop a tool that hides technical details and is easy for that

user group to use and understand. This creates the challenge of trying

to hide as much complexity as possible while still making full use of

all its capabilities. It also requires a basic understanding about what is

cognitively difficult for that user group and what metaphors may be used

to make the tool easier to use. Such a goal also requires the need to

convert the data modeled with Semantic Web technologies to the data

model of the tool and vice-versa.

3. Align hte model with Linked USDL: One of the main advantages

of the proposed model over similar approaches such as USDL is the

possibility of describing full service systems and not only what is visible

to customers. As such, it should be possible to generate different views

depending on the desired scope. Since Linked USDL may be considered

as a view for customers, then allowing the automatic exportation to that

language proves the concept of views generation and makes this model a

valuable addition to Linked USDL’s user base. Another valuable feature

we get from this alignment is the possibility of extracting information from

Linked USDL service systems to automatically build a service model. The

biggest challenges this goal creates are the non-trivial process of aligning

the elements of two different logical models, exporting and importing data

from one to another and also the lack of examples of service descriptions

in Linked USDL, which complicates the study of that tool.

14Linked Open Services

8

1.4. APPROACH

1.4 Approach

The first step that needs to be one in order to implement this model is to

conduct an extensive research to be able to identify the most common service

model attributes found in the literature. During such a research it is necessary to

identify previous approaches for service system modeling and the attributes they

use to describe a service system. With that information we can compare and

contrast them in order to identify the most common and useful attributes used

in the studied models. By identifying those attributes we have the necessary

foundations to start developing a new service model.

After designing the intended model, it is necessary to describe it using

Semantic Web technologies and to follow the principles of the Linked Data.

This means building the model with RDF15, because that is the standard for

Linked Data [13] and reusing existing vocabularies found in the Linked Data

Cloud.

The completion of this step ensures that we have a working ontology to

describe internal and external elements of services, which we may call Linked

Services, as they are described as Linked Data [76]. Because of that and because

our goal, inserted in the USDL research efforts, is modeling service systems, the

model will be called Linked Service Systems for USDL (LSS-USDL).

An initial evaluation of the model will be done by using it to describe a

set of service systems. The model should be considered acceptable and relevant

if the aforementioned services can be successfully described and no important

information is missing. Some minor model improvements might arise during this

empirical study.

After the successful development and evaluation of our service model there

are new tasks to complete in order to accomplish our goals.

The first task is to implement an abstraction layer on top of the service

system model in order to allow better interaction with it. This will be done using

standard software development tools, focusing on rapid prototyping frameworks

to reduce development time. The resulting application should be able to generate

new RDF for service descriptions, load existing service descriptions in RDF files

and edit the service systems’ information in a graphical notation. The evaluation

of this task may be performed by viewing and modifying the previously described

services and by modeling new services and checking their RDF code correctness.

Another task is to implement a tool that generates new specific service

descriptions based on the complete service system model and a new service

system model based on an existing service description. The main challenge of

this task is doing such conversions to and from Linked USDL, as discussed in the

previous section. In order to overcome this challenge, a study of Linked USDL

15Resource Description Framework

9

CHAPTER 1. INTRODUCTION

must be performed and enough reasoning must be applied for elements that

might not have a direct match. The evaluation of this task may be performed

by exporting existing service descriptions to Linked USDL and checking the

correctness of the results, and also by converting Linked USDL descriptions into

our model’s notation.

Finally, these two tools should be merged in a single prototype application.

That application should be open sourced to allow future improvements, have

good documentation and be deployed for demonstration purposes.

1.5 Document structure

This document is structured as follows: the first chapter introduces the problem

and the proposed solution. The second chapter studies the state of the art and

proposes a framework to evaluate service descriptions based on the identified

common attributes. The third chapter presents the service system model building

blocks, the design approach and the resulting model. The fourth chapter presents

two software prototypes that intend to demonstrate and improve the model’s

usage. The fifth chapter reveals the evaluation process of the model with three

different use cases. Lastly, the sixth chapter draws our conclusions and discusses

possible future work.

This document has two appendices: the first one is the schedule of the work

for the second semester and how its tasks were performed, and the second one

is the documentation found in the two code repositories created in the scope of

this thesis.

10

2
State-of-the-art

This chapter presents and discusses several service and business models found

in the literature, their strengths and weaknesses and how can we compare and

contrast them to obtain a set of common attributes that describe a service. It

also presents some related work in the field of service description tools.

The first section briefly introduces the studied service models and proposes

a framework of the most common attributes between them. The second section

explains each of the identified frequent attributes and relates them to their

corresponding service models. The third section describes each of the afore-

mentioned service models in greater detail. Finally, the fourth section presents

current service description tools.

2.1 Service models overview

To identify the most frequent attributes of service models, an extensive literature

review was conducted on existing approaches. From this study, 8 models were

chosen for a deeper analysis. Some of those models are classified by their

authors as business models but, as a business model represents a set of services,

what we get in fact is a different view of the same problem, more focused on

business aspects. Because of the importance of mixing different perspectives to

get richer results, we consider those approaches to our state of the art study.

These 8 models were then categorized based on their nature, in order to

better understand how closely related they are to our goals and how can they

contribute to them. In this analysis, we tested if the models referred to an

internal or an external service description, how formal its notation it is and

their classification as a service description tool.

According to Ferrario et al., service description efforts may be categorized

into six different groups [32]:

1. Service-Oriented Architectures (SOA): Focuses on IT aspects of ser-

11

CHAPTER 2. STATE-OF-THE-ART

vices and is used mainly to exchange service information over the web.

2. Semantic Web Services: Based on SOA but focused on the automation

of discovery, composition and invocation of services using ontology reasoners

and planning algorithms.

3. Software-as-a-Service (SaaS): Similar to SOA, but focused on value

delivery to the customer, rather than generic service information exchange

between two or more parties.

4. Purely economic: Usually not specified in a computer readable way, is

used to describe the economic aspects of a service regardless of its nature.

5. Service networks: Also focused on economic aspects, but emphasizing

the ecosystem and value chain relationships between services of economic

value.

6. Big picture of service systems: Focuses on the bigger picture of

service systems or service science, including assets such as co-creation and

knowledge.

Using these six service description groups for categorization, it is now possible

to complete the proposed analysis. Table 2.1 presents the classification of the

studied service models according to the aforementioned parameters. It also

includes the desired classification of the service model that we need for the work

proposed in this thesis, so as to compare our goals with the state of the art.

Scope Formality Category

Alt and Zimmermann (2001) I I 4

Petrovic et al. (2001) I F 4

Kaner and Karni (2007) I I 6

Kinderen and Gordijn (2008) E C 5

Spohrer and Maglio (2009) I F 6

Osterwalder and Pigneur (2010) I I 4

Fielt (2010) I I 6

Zolnowski et al. (2011) I I 6

Desired model I C 6

Table 2.1: Service models classification. Scope: I = Internal, E = External.

Formality: I = Informal, F = Formal, C = Computer readable. Category: [1-6]

= same category as in the explanatory numbered list.

As we can see, no current approach matches this simple set of requirements

of the desired model. This means that there is currently no model that we

12

2.2. FRAMEWORK ATTRIBUTES

can adopt and implement to satisfy our goals. Thus, there is a great need to

develop a new service description model that fully satisfies our needs.

In order to develop such a model, a new study on the selected approaches

must be conducted, such that we can understand common patterns and use them

as a framework to find the attributes needed for a complete service description.

Comparing these models, it was possible to identify common patterns and

thus derive a framework of the most frequent attributes that are used to describe

a service. Those attributes are Goals, Stakeholders, Processes, Inputs,

Outputs, Resources, Measures, Legal and Financial.

Table 2.2 shows the contributions of each service model to the framework of

identified common attributes.
G

oa
ls

S
ta

ke
h
ol

d
er

s
P

ro
ce

ss
es

In
p
u
ts

O
u
tp

u
ts

R
es

ou
rc

es
M

ea
su

re
s

L
eg

al
F

in
an

ci
al

Alt and Zimmermann (2001) � � � � � �
Petrovic et al. (2001) � � � �
Kaner and Karni (2007) � � � � � � � � �
Kinderen and Gordijn (2008) � � � � �
Spohrer and Maglio (2009) � � � � � � � �
Osterwalder and Pigneur (2010) � � � � �
Fielt (2010) � � � � � �
Zolnowski et al. (2011) � � � � �

Table 2.2: Service models attributes categorization. �= moderate contribution,

�= important contribution.

In the next section we discuss each of these attributes in detail. The models

are described in a later section, where individual tables show which elements of

each model contributed to each identified framework attribute.

2.2 Framework attributes

This section describes the 9 attributes of the framework we derived from the

literature review for modeling service systems.

2.2.1 Goals

Service or business goals are among one of the most used attributes in the

studied models. Goals are also called Mission, Value proposition, among

13

CHAPTER 2. STATE-OF-THE-ART

other naming options.

There is no doubt that this is a crucial element for a service description

model, not only because of its wide acceptance among the studied approaches,

but also because it states the objectives of the service and its value proposition

to the consumers.

2.2.2 Stakeholders

Stakeholders are one of the most important attributes of a service, as the whole

service operation is conditioned by the people and organizations involved. This

attribute is used by almost all the studied approaches, due to its importance.

When studying how the service models describe the stakeholders, it is possible

to notice some frequent attributes in use. In most service models, there is an

attribute for the service customers. In the Business Model Canvas and the two

studied improved approaches there is also an attribute to describe the service

partners [34][74][92]. Spohrer and Maglio propose the description of other parties,

namely authorities and competitors [84].

Stakeholders are, therefore, an important yet complex element to describe.

Thus, when developing a service description model, it is necessary to use caution

and select the most adequate level of complexity.

2.2.3 Processes

Processes are, along with goals, a service attribute that all service description

approaches studied included in their models. Processes are also called Key

activities, Elementary service, among other naming options.

This attribute is of utmost importance when describing services for internal

organization, because corporations must have a strong knowledge of the processes

needed for any of their services, in order to identify bottlenecks and other flaws

that can be corrected. A good process description tool is, then, an organizational

advantage, and thus should be taken into consideration when creating a new

service description model.

We also consider sub-processes such as customer relations, marketing and so

forth to be included in this category.

2.2.4 Inputs

Service inputs are described in a small set of service models. Spohrer and Maglio

refer to them using the concept of Ecology [84]. Fielt, when describing a model

that improves on Osterwalder’s Business Model Canvas, introduces Partner

activities and Customer activities, which are a set of activities that

act as an input for the service [34].

14

2.2. FRAMEWORK ATTRIBUTES

However, the best description of service inputs lies within Karni and Kaner’s

CAIOPHYKE model, where we can describe main classes of the major class

Inputs, such as Physical, Information or Constraints [49].

2.2.5 Outputs

Service outputs, like service inputs, are described in a small set of service models.

Spohrer and Maglio refer to them using the concept of Outcomes, where they

reference game theory to propose a desired outcome of win-win among the

stakeholders [84]. In the e3service we can see service outputs description in the

classes Consequence, Benefit and Value derivation [51].

As with service inputs, the best description of service outputs lies within

Karni and Kaner’s approach, where we can describe main classes of the major

class Outputs, such as Knowledge, Waste or Money [49].

2.2.6 Resources

Resources are described in all internal service description models, and thus is

also an important attribute to consider. Alt and Zimmermann’s approach is the

only internal service description model that does just a partial description of

resources, as it only considers technology [4].

Kaner and Karni classify resources as Human enablers, Physical

enablers and Information enablers [47]. Osterwalder and Pigneur

classify their model’s Key resources attribute as Physical, Financial,

Intellectual and Human [74]. Fielt further expands this resources description

to include Partner resources and Customer resources [34].

2.2.7 Measures

This attribute refers to how the company can measure the service’s performance,

in order to get feedback of their operations. Surprisingly, only a very small

number of models was found in the literature that addressed this attribute.

Spohrer and Maglio classify measures as quality measures (determined by the

customer), productivity measures (determined by the provider), compliance mea-

sures (determined by the authority) and sustainable innovation measures (deter-

mined by competitors) [84]. Kaner and Karni use the main class Performance

measures in the major class Information enablers [47], which shows that

this attribute is not regarded as a core pillar of their model.

15

CHAPTER 2. STATE-OF-THE-ART

2.2.8 Legal

The legal aspects of a service or business have a surprisingly low presence

on the literature. Alt and Zimmermann propose Legal issues as one of

their six generic elements of a business model [4]. Karni and Kaner use

the main class Legal factors in the major class Environment, dividing

it with the minor classes Constraints on customer, Constraints on

employees, Constraints on location, Constraints on service fees

and Standards [49]. Finally, Spohrer and Maglio identify Governance

mechanism based interactions (which they define as an interaction often

invoked by authorities, which usually takes place when one stakeholder interacts

in non-normative ways) and Access rights (the access rights of any given

resource) [84].

2.2.9 Financial

The financial factors of a service or business are also a very important attribute

to define. These factors are considered in almost all of the studied approaches,

although not all of them present a comprehensive description.

Osterwalder and Pigneur’s model and the two models that were built on top

of it use the elements Cost structure and Revenue streams to describe

this attribute [34][74][92]. However, Fielt further explores this attribute and

adds two more elements: Partner cost structure and Customer cost

structure [34]. Alt and Zimmermann only refer to revenues [4], while Petrovic

et al. present not only a Revenue model but also a Capital model [77].

Kaner and Karni have no major class for this attribute, but explore it in many

main classes: Financial factors (from both the major classes Inputs

and Outputs), Economic factors (from the major class Environment)

and Service payment (from the major class Processes) [47]. Finally,

Kinderen and Gordijn refer to financial and economic factors in their element

Sacrifices, which describes what must be given in order to benefit from a

provider’s service [50]. This approach, however, does not cover the full scope of

this attribute, as it is just about payments, and may even miss its scope when

that payment is not monetary.

2.3 Service model approaches

2.3.1 Six generic elements of business models

Alt and Zimmermann distinguish six generic elements of a business model:

Mission, Structure, Processes, Revenues, Legal issues and Tech-

nology [4]. The first four elements are the core elements, while the last

16

2.3. SERVICE MODEL APPROACHES

two represent requirements and constraints. The authors propose those six

generic elements as a comprehensive framework to develop sustainable business

models [4]. Figure 2.1 shows the proposed model.

Generic attributes Model attributes

Goals Mission

Stakeholders Structure

Processes Processes

Inputs -

Outputs -

Resources Technology

Measures -

Legal Legal issues

Financial Revenues

Table 2.3: Attribute analysis of the six generic elements of business models [4]

Figure 2.1: Six generic elements of business models [4]

This is the earliest proposed model of this state of the art study. However,

as we can see by looking at Table 2.2, it already mentions most of the generic

attributes that newer models used the most, which indicates that it had impact

in the field. Furthermore, Petrovic et al. make a reference to this model to

check as a validation of their proposed model [77].

Despite the presence of the majority of the most used attributes, when

looking at the generic attribute Resources, it is clear that this model does

17

CHAPTER 2. STATE-OF-THE-ART

not fully describe it, as it only proposes the attribute Technology, which is

but a segment of a resources description.

2.3.2 Business model seven sub-models

Petrovic, Kittl and Teksten divide a business model into seven sub-models in or-

der to describe the logic behind business processes. Those are the Value model,

the Resource model, the Production model, the Customer relations

model (which is further divided into Distribution model, Marketing

model and Service model), the Revenue model, the Capital model and

the Market model [77].

Generic attributes Model attributes

Goals Value model

Stakeholders -

Processes Production model, Customer relations

model

Inputs -

Outputs -

Resources Resource model

Measures -

Legal -

Financial Revenue model, Capital model

Table 2.4: Attribute analysis of the Business Model seven sub-models [77]

The naming of this model’s elements hints at a lower level description for each

of them. However, the authors do not identify any further specifications. When

looking at Table 2.2, it is interesting to notice how this model’s contributions

to the list of generic attributes is similar to the contribution of Osterwalder’s

work, despite the years of difference.

The biggest limitation of this approach is the lack of descriptions of each

of the seven proposed sub-models, which makes it impossible to fully grasp the

concepts proposed by the authors. Another limitation is the lack of a description

of stakeholders.

2.3.3 CAIOPHYKE

Kaner and Karni propose a service model in [49], extending it and naming

it CAIOPHYKE in [47]. This model describes a service according to 9 ma-

jor classes: Customers, Goals, Inputs, Outputs, Processes, Human

18

2.3. SERVICE MODEL APPROACHES

enablers, Physical enablers, Information enablers and Environ-

ment. Each of these major classes can be further described by their respective

main classes, such as Service provision or Call center (main classes for

the major class Processes). Each of these main classes can then be further

described by their respective minor classes, such as Call center service or

Call routing (minor classes for the main class Call center) [47].

Generic attributes Model attributes

Goals Goals

Stakeholders Customers

Processes Processes

Inputs Inputs

Outputs Outputs

Resources Human enablers, Physical enablers, Infor-

mation enablers

Measures Performance measures (from Information

enablers)

Legal Legal factors (from Environment)

Financial Financial factors (from Inputs and Out-

puts), Economic factors (from Environ-

ment), Service Payment (from Processes)

Table 2.5: Attribute analysis of CAIOPHYKE [49]

This model was developed based on a study with 150 student projects

that covered around 100 service domains [48]. Figure 2.2 shows a graphical

representation. For a more complete version, refer to Tables 2 and 3 of [47].

The authors’ proposed model is one of the most comprehensive models found

in the literature, and also one of the best suited to the identified generic

attributes, as seen in Tables 2.2 and 2.5. The empirical study that is shown to

be the root of this proposal is also regarded as an advantage.

There are, however, some disadvantages due to its high level of complexity.

Firstly, as we can see in Table 2.1 or by studying [47][48][49], this model is

based on an informal description, which means that a big level of complexity

might induce some level of ambiguity or doubt, which in turn might rise the

number of mistakes during the description of a service. Moreover, while a

complex, formal model might hide some of its complexity for some stakeholders

by applying a set of rules that return simpler, contextual views, an informal

model is not capable of such operations. Finally, the names of this model’s

elements have slight variations between the articles, and some main and minor

classes appear and disappear across them, which makes it difficult to summarize

19

CHAPTER 2. STATE-OF-THE-ART

Figure 2.2: CAIOPHYKE table (major classes and their main classes) [49]

all the information scattered across the sources.

2.3.4 e3service

e3service1 is an ontology for configuring IT services based on consumer needs [50]

proposed in [51] that belongs to the e3family2. This ontology puts a greater

focus on satisfying consumer needs and displaying the various value offerings

from different services for an easier comparison. As such, its elements are very

different from the ones in other service model approaches. Its needs ontology is

displayed in Figure 2.3.

In this ontology, there is an Elementary service performed by a

Supplier, that has a certain Benefit (which, in turn, has a Consequence).

A Consumer gives a Sacrifice in order to have a Functional need, which

is Concretized by a Want, which in turn is Concretized by a Demand

that has a certain Benefit. Wants and Consequences are also connected

by an Adds value element [50].

The biggest conceptual difference between e3service and USDL is that the

former focuses on the relations of multiple services, while the later focuses on

the description of a single service.

This model is a valuable contribution to the state of the art, as it is

represented by a machine-readable ontology, which is the level of formality we

want for our model. However, as stated before, the scope of this model is

1http://e3value.few.vu.nl/e3family/e3service/
2http://e3value.few.vu.nl/

20

2.3. SERVICE MODEL APPROACHES

Generic attributes Model attributes

Goals Need, Want, Demand

Stakeholders Consumer, Supplier

Processes Elementary service

Inputs -

Outputs Consequence, Benefit, Value derivation

Resources -

Measures -

Legal -

Financial Sacrifices

Table 2.6: Attribute analysis of the e3service needs ontology [50]

Figure 2.3: e3service needs ontology [50]

for customers, not managers, and so it describes an external representation of

a service, and not an internal representation, as we want for our model. In

addition, as we can see in Table 2.1, e3service falls in the Service networks

group of Ferrario et al. [32], which is also different from what we need.

2.3.5 Ten foundational service science concepts

Spohrer and Maglio define service as value-cocreaton [84]. As such, they

list ten foundational concepts to describe it. Those concepts are Ecology,

Entities, Interactions (networks), Outcomes, Value proposition

based interactions (individuals), Governance mechanism based

interactions (collective), Stakeholders, Measures, Resources,

Access rights and Questions [84]. These ten foundational concepts are

then connected, as seen in Figure 2.4.

21

CHAPTER 2. STATE-OF-THE-ART

Generic attributes Model attributes

Goals Questions

Stakeholders Stakeholders

Processes Value proposition based interactions, Inter-

actions (Networks)

Inputs Ecology

Outputs Outcomes

Resources Entities, Resources

Measures Measures

Legal Governance mechanism based interactions,

Access rights

Financial -

Table 2.7: Attribute analysis of the ten foundational service science concepts [84]

Figure 2.4: Ten foundational concepts of service science diagram [84]

As we can see in Tables 2.2 and 2.7, this model is one of the most complete

according to the identified generic attributes that can be found in the literature.

It includes elements such as Measures, which is surprisingly rare in the other

approaches, and the attribute Stakeholders is very comprehensive, defining

customers, providers, authorities and competitors [84].

There are, however, some flaws in this model, such as the lack of elements

for financial attributes description, or the strange naming for some of the

foundational concepts (such as Ecology for Inputs or Questions for Goals).

2.3.6 Business Model Canvas

The Business Model Ontology was created by Alexander Osterwalder in his PhD

thesis by identifying the most common business model building blocks in the

literature [73], and later explained in [75]. The resulting nine building blocks,

22

2.3. SERVICE MODEL APPROACHES

categorized according to four different pillars, were: Value proposition

under the pillar Product, Target customer, Distribution channel and

Relationship under the pillar Customer interface, Value configu-

ration, Capability and Partnership under the pillar Infrastructure

management and Cost structure and Revenue model under the pillar

Financial Aspects. For a graphical representation of the Business Model

Ontology refer to Figure 21 of [73].

Generic attributes Model attributes

Goals Value proposition

Stakeholders Customer segments, Key partnerships

Processes Key activities, Channels, Customer rela-

tionship

Inputs -

Outputs -

Resources Key resources (physical, financial, intellec-

tual, human)

Measures -

Legal -

Financial Cost structure, Revenue streams

Table 2.8: Attribute analysis of the Business Model Canvas [74]

Osterwalder and Pigneur later presented an improved version of the ontology,

which they named Business Model Canvas3. The improved model uses a high-level

graphical representation for informal service description, instead of the low-level

ontology elements for a more formal description. This new model drops the usage

of pillars, and the new building blocks are Value proposition, Customer

segments, Channels, Customer relationships, Key activities, Key

resources, Key partners, Cost structure and Revenue Streams [74].

Its graphical representation is shown in Figure 2.5.

The Business Model Canvas has the advantage of offering a very simple

and easy to understand tool for managers to describe their services. Another

notable advantage of this model is its appraisal by other authors that built

their models on top of this, such as Fielt [34] in the next described approach

and Zolnowski et al. [92] in the last approach. Moreover, its pragmatism and

popularity ensures that this is an influential work that is worth studying.

However, some disadvantages arise when studying this model with our goals

in mind. Firstly, its simplicity, although very desirable in some scenarios, is

actually very limiting for a complete service description as intended. In addition,

3Available online at http://www.businessmodelgeneration.com/

23

CHAPTER 2. STATE-OF-THE-ART

Figure 2.5: Business Model Canvas [74]

the model imposes a very informal description in each of its attributes, which

is the opposite of the desired level of formality.

2.3.7 Extended Business Model Canvas for Co-Creation and

Partnering

This extended version of Osterwalder’s Business Model Canvas [74] was developed

by Erwin Fielt after two previous attempts [33][35] at improving the original

model. This model extends the original one in the following aspects [34]:

• Customer segments is called Target customer and gets the building

blocks Customer activities and Customer resources

• Key partners gets the building blocks Partner activities and

Partner resources

• Cost structure gets the building block Partner cost structure

• Revenue streams gets the building block Customer cost structure

Figure 2.6 shows the graphical representation of the improved model in an

easy way to compare to the original one.

This model improves the original one by addressing what Fielt identifies as

Osterwalder’s model’s biggest flaws: partnering (in [35]) and co-creation (in [33]).

This third iteration builds on top of those two by combining their new elements.

24

2.3. SERVICE MODEL APPROACHES

Generic attributes Model attributes

Goals Value proposition

Stakeholders Target customer, Key partners

Processes Key activities, Channels, Customer rela-

tionships

Inputs Partner activities, Customer activities

Outputs -

Resources Partner resources, Key resources, Customer

resources

Measures -

Legal -

Financial Cost structure, Partner cost structure, Cus-

tomer cost structure, Revenue streams

Table 2.9: Attribute analysis of the Extended Business Model Canvas for Co-

Creation and Partnering [34]

Figure 2.6: Extended Business Model Canvas for Co-Creation and Partner-

ship [34]

Regarding our goals, this model addresses the high simplification of the original

model, which hints at better, more complete service descriptions.

Fielt’s model does not, however, share the same level of acceptance of

Osterwalder’s work due to the lack of scientific publications and marketing

efforts. Furthermore, although six elements were added, Table 2.2 shows that

this model only contributes to one more element of the common attributes, so

there is a risk that this increase in complexity might not be very beneficial.

2.3.8 Adapted Business Model Canvas

This new adaptation of Osterwalder’s Business Model Canvas [74] tries once

again to tackle the issue of the lack of elements to describe service co-creation.

25

CHAPTER 2. STATE-OF-THE-ART

However, this new approach focuses on a redistribution of the elements and their

connections, rather than changing them as seen in Fielt’s approach [34]. As

such, this model shares the same building blocks as the original Business Model

Canvas (although some of them might have a slight renaming, still maintaining

its semantic value). The big difference then lies within the organization of those

building blocks and the connections between them, as seen in the respective

diagram in Figure 2.7.

Generic attributes Model attributes

Goals Value proposition

Stakeholders Customers, Key partners

Processes Key activities, Channels, Customer rela-

tionship

Inputs -

Outputs -

Resources Key resources

Measures -

Legal -

Financial Cost structure, Revenue streams

Table 2.10: Attribute analysis of the Adapted Business Model Canvas [92]

Figure 2.7: Adapted Business Model Canvas [92]

One of the biggest advantages of this model is that its author states that

it focuses directly in services and their specific aspects, as opposed to other

models, which typically put a greater focus on business in general [92]. Also,

as in Fielt’s approach, this model emerges in an attempt to correct identified

flaws of the Business Model Canvas which, according to Zolnowski et al., are

the lack of attention for the specific aspects of services and the lack of elements

to describe service co-creation [92].

This model suffers, however, from one of the problems of Fielt’s approach:

26

2.4. TECHNICAL SERVICE DESCRIPTIONS

due to the high popularity and usage of Osterwalder’s original model, the

improved version does not share the same amount of acceptance. In addition,

there is little contribution to be found in this model after analyzing the original

Business Model Canvas for our study of the most common attributes of service

models, as it shares the same elements, only with different connections and

placements.

A further comparison of the original Business Model Canvas and the im-

proved approaches by Fielt and by Zolnowski et al., along with more detailed

explanations of the improvements of each of the aforementioned new models,

can be read in [93] and are thus left out of this literature review work.

2.4 Technical service descriptions

In the last section we discussed several high-level models and frameworks that

different authors followed in order to describe service systems and businesses

in general. This discussion provided useful insights about important elements

to consider for service systems description in a business perspective. In this

section we focus on existing technical tools and ontologies for service description,

in order to acquire a better understanding of the technical perspective of our

problem.

2.4.1 *-USDL

The Unified Service Description Language (USDL) is a tool for describing various

types of services ranging from professional to electronic services [8]. The USDL

family (*-USDL) is composed of α-USDL, which is the original USDL version

that was released in 2009, USDL, which is currently at version 3.0, and Linked

USDL, which is a simpler description model that builds on top of the Semantic

Web technologies [18].

This family of service description tools are classified by Ferrario et al. as

purely economic, since they model generic service systems regardless of their

technological implementation, merging the business and technological scope of

services [32].

USDL is an effort to merge the business, operational and technical per-

spectives of service systems: the business perspective describes the fundamental

properties for characterizing a service, the operational perspective describes the

operations that are executed by a service and the technical perspective allows the

specification of technical information of services exposed by an organization [19].

USDL is based on 9 modules: foundation, service level, participants, pricing,

legal, service, interaction, functional and technical [69]. Their relation is show

in Figure 2.8.

27

CHAPTER 2. STATE-OF-THE-ART

Figure 2.8: USDL dependencies between modules [69]

Linked USDL is an attempt to overcome some of the original USDL disadvan-

tages, like the model complexity and limitations in extensibility. Thus, it is built

using RDF and uses Linked Data, which increases interoperability by allowing

sophisticated ontology representation techniques [25]. It also greatly simplifies

USDL’s original structure, having only 4 modules: USDL-Core, USDL-Pricing,

USDL-SLA and USDL-SEC [2].

USDL and Linked USDL are service description tools that can model generic

service systems, which makes them very similar to our intended model. However,

they are limited to a blackbox approach, which makes them unsuitable for a

complete service system description. Thus, although they share some traits with

our intended model, they do not comply with all our goals and therefore do

not eliminate our need for creating a new model.

2.4.2 WSDL

The Web Services Description Language (WSDL) is a model and XML format for

describing web services [22]. Its formalization was published in 2001 as version

1.1 [23]. Its current version is 2.0, which is a W3C recommendation [16].

This service description tool focuses on web services and not in business

services. Hence, according to Ferrario et al.’s classification, WSDL belongs to

the group of Service-Oriented Architectures (SOA) [32].

WSDL enables the separation of the description of the service’s abstract

functionality from the service’s concrete details. At the abstract level the

web service is described in terms of messages it sends and receives. An

operation associates message exchange patterns with messages and an interface

is a collection of operations. At the concrete level a binding specifies interfaces

details, an endpoint associates a network address with a binding and a service

groups the endpoints that implement a common interface [22].

This tool can be improved by using Semantic Annotations for WSDL and

28

2.4. TECHNICAL SERVICE DESCRIPTIONS

XML Schema (SAWSDL), which is a set of extension attributes that add

semantic annotations to WSDL components [54].

WSDL is a widely used service description tool and its current version

is a W3C recommendation. However, since it focuses on web services and

technological details, it is not capable of providing relevant descriptions of

arbitrary services, specially non-technological ones.

2.4.3 WSMO

The Web Service Modeling Ontology (WSMO) is a conceptual framework and

formal language for semantically describing web services in order to aid in the

automation of discovering, combining and invoking services over the web [24].

This ontology is based on the Web Service Modeling Framework [29].

Due to its focus on web services and semantic technologies, WSMO is

classified according to Ferrario et al. in the category of Semantic Web Services.

The overall structure of WSMO is divided in four main elements: ontologies,

which provide the terminology used by other WSMO elements, web services,

which provide access to services that provide value in some domain, goals, which

represent user desires and mediators, which deal with interoperability problems

between different WSMO elements [79].

This ontology is also the inspiration for WSMO-Lite, a lightweight set

of semantic service descriptions that can be used for annotations of WSDL

elements using the SAWSDL annotation mechanism. This set of semantic

service descriptions uses a small subset of WSMO to define a limited extension

of SAWSDL [30].

WSMO provides a solution for semantic web services description but, as other

service description tools, is not suitable to describe general service systems.

2.4.4 OWL-S

OWL-S4 is an ontology built on top of OWL5 [63] that facilitates the automatic

discovery, invocation, composition and monitoring of web resources offering

particular services or properties. It is made of three different parts: the service

profile, the process model and the grounding that provides details on how to

inter-operate with services through messages [61].

Since it is build on top of a semantic language and aimed at the Semantic

Web, OWL-S is classified according to Ferrario et al. in the category of Semantic

Web Services.

The top level structure of this ontology provides three essential types of knowl-

edge about a service, as seen in Figure 2.9. These types of knowledge try to an-

4Semantic Markup for Web Language
5Ontology Web Language

29

CHAPTER 2. STATE-OF-THE-ART

swer the questions: ”What does the service provide for prospective clients?” (an-

swered in ServiceProfile), ”How is it used?” (answered in ServiceModel)

and ”How does one interact with it?” (answered in ServiceGrounding).

Figure 2.9: OWL-S top level [61]

As seen in other service description tools, OWL-S provides the necessary

structure to automate services discovery and automation and to integrate them

with the Semantic Web, but also lacks a broader scope, as it only focuses on

web services, and not on generic service systems.

2.4.5 SWSF

The Semantic Web Services Framework (SWSF) [9] is a tool for service de-

scription based on two major components: the Semantic Web Services Language

(SWSL) [10] and the Semantic Web Services Ontology (SWSO) [11].

This tool is classified according to Ferrario et al. in the category of Semantic

Web Services, due to both the importance it gives to semantic web services and

its usage of Semantic Web tools.

SWSL is used to specify the SWSO and individual web services [10].

SWSO is expressed in two forms: FLOWS, which is a first-order logic ontology

for web services, and ROWS, which is a rules ontology for web services [11].

Comparing to OWL-S, SWSF presents a more complete descriptive language,

because while SWSF uses FLOWS, which is expressed in first-order logic [11],

OWL-S is expressed in OWL-DL [61], which sacrifices expressiveness in favor of

computational completeness and decidability [63].

Similarly to WSMO and OWL-S, SWSF is seen as a positive attempt to

use Semantic Web technologies to facilitate services description and interaction,

while lacking the possibility to be used in generic service systems.

30

3
Service system modeling

This chapter presents our proposed model, along with its building blocks and

iterative approach.

The first section presents the concepts and building blocks to be used for

the design of the service system model. The second section describes how they

are used in an iterative approach to develop the desired model. Finally, the

third section described the resulting service system model in greater depth.

3.1 Concepts and building blocks

In Chapter 2 we studied some approaches for business and service modeling.

By analyzing the most common attributes across them, we were able to build

a framework to evaluate service modeling approaches. This framework combines

the knowledge gathered by different authors in order to provide a set of attributes

commonly used for the description of a service. Those attributes are Goals,

Stakeholders, Processes, Inputs, Outputs, Resources, Measures,

Legal and Financial. Therefore, this framework is also a valuable resource

for the specification of the service system model.

For the specification of the service system model, we may also classify its com-

ponents according to the interrogative pronouns commonly used in journalism:

”What”, ”How”, ”Where”, ”Who”, ”When” and ”Why”. This strategy in not

uncommon in the literature, as we can see it in Zachman’s framework for enter-

prise architecture [90][91] and other approaches by different authors [15][27][82].

This classification enhances readability and understandability, gives an intuitive

meaning to abstract concepts and helps organizations to ask questions about

their processes and process models [82]. It also helps identifying some charac-

teristics of a service offer (such as provider, channel or payment) and can be

used as a common framework for querying different services [27].

Another useful source for service design is the service blueprint. Service

31

CHAPTER 3. SERVICE SYSTEM MODELING

blueprinting is a method created by Shostack [81] that is used for analyzing the

service delivery process, by using a flow chart-like presentation to distinguish

several types of customer interaction [56]. When designing a service blueprint,

the horizontal axis indicates the chronological sequence, while the vertical axis

separates the different areas of actions [36]. Furthermore, the vertical axis

contains a set of lines that separate the different areas of context. The first,

called line of interaction, separates the customer action area from the service

provider action area, the second, called line of visibility, separates visible from

invisible actions in the customer perspective, and so forth [36]. The line of

visibility is also regarded as the separation between the service “font stage” and

“back stage” [38]. Since this is a well known method for service modeling that

is easy to understand and use by business managers, it is thus a very important

inspiration for our model. Hence, although the desired model is meant to work

as an ontology for service systems, its graphical representation should resemble

an improved version of the service blueprint tool.

Finally, the concept of co-creation is also used. This concept shifts our study

of economic activity from a Goods-Dominant logic (GD) where value exchange

is perceived through goods transactions (such as selling/buying a product) to a

Service-Dominant logic (SD) where value exchange is co-created by all parties

of service interactions [58]. As such, we no longer see value exchange as a

provider delivering value to a customer by selling a product, but rather as both

provider and customer co-creating value to each other during the interactions

of the service.

Using these four building blocks it is now possible to develop the desired

service model. The approach for joining these building blocks and reaching a

solution is described in the next section.

3.2 Approach

Based on the notion that co-creation during service interactions is a core

feature of service systems [58] and that the interactions flow is also a core

feature in service blueprints [81] we can conclude that a service system should

represented by its flow of interactions and their contextual information, such

as the value being co-created. Therefore, we should focus on how to describe

service interactions, their context and their flow.

Matching the framework for service modeling derived in the study of the state

of the art with the interrogative pronouns, we get the attribute Stakeholders

for the pronoun “who”, the attribute Goals for the pronoun “why”, the attribute

Resource for the pronoun “what” and the attribute Process for the pronoun

“how”. The interrogative pronouns “when” and “where” are easily matched

with the spatial and temporal context, respectively, of a service interaction. As

32

3.2. APPROACH

such, we can describe service interactions with the six interrogative pronouns

by using the following attributes:

• Who: Role (human or computer actor belonging to a stakeholder)

• Why: Goal (a service goal for the specified actor)

• What: Resource (may be physical, knowledge or financial)

• How: Process (the business process a service interaction belongs to)

• When: Time (may contain different levels of granularity)

• Where: Location (may contain different levels of granularity)

We now have a 6-point interaction star model for describing service interac-

tions, as seen in Figure 3.1.

Figure 3.1: 6-point interaction star model

Moreover, inspired by the work of service blueprint, we may also classify

interactions based on their area of action. Thus, an interaction can be a

customer interaction, an onstage interaction, a backstage interaction or a support

interaction [36].

In the foundational ontology DOLCE (Descriptive Ontology for Linguistic

and Cognitive Engineering) resources may be classified as endurants if they

are physical objects or perdurants if they are not physical, such as services or

events [62]. Poels classifies resources as operand if they are passive resources

like objects or operant if they are knowledge and skills that embody compe-

tences [78]. We can also find this pattern in some of the models we studied

in Chapter 2 [49][74]. Therefore, resources should be classified as physical or

knowledge. We also consider a third classification, financial resources, because it

is important in a business-oriented model to give high visibility of that particular

kind of resource.

33

CHAPTER 3. SERVICE SYSTEM MODELING

These extensions to the interaction and resource entities are depicted in

Figure 3.2.

Figure 3.2: Extensions to interaction and resource entities

Since we are targeting this model to interact with the Linked Data Cloud

(LDC) we need to build it according to the Semantic Web principles and

integrate it with other ontologies. This means that now the connection between

entities must have a semantic meaning expressed by an RDF triple, such as

“Interaction isPerformedBy Role”. The integration with th LDC is

done by reusing relevant Linked Data ontologies, such as Geonames to give a

geographical context to locations or DBpedia to give a better semantic meaning

to resources. The resulting model is the proposed service system model of this

thesis and is fully described in the next section.

3.3 The LSS-USDL model

Due to the aforementioned integration with the LDC, we are modeling Linked

Services [76]. Because of that and since our goal, inserted in the USDL research

efforts, is modeling service systems, we name our model Linked Service Systems

for USDL (LSS-USDL). Its logo, shown in Figure 3.3, is inspired in Linked

USDL’s logo but, because we are moving from a blackbox to a whitebox model,

only the borders are colored and the inside is now white.

Figure 3.3: LSS-USDL logo

34

3.3. THE LSS-USDL MODEL

This model was developed as an RDF ontology. This ontology is written

in Turtle as opposed to XML due to its better readability [12]. The code is

open source and is available at https://github.com/rplopes/lss-usdl

under the Creative Commons Attribution 3.0 Unported License1, in order to

allow future improvements from the open source community.

Figure 3.4 shows the final version of our service model, including semantic

relations and elements from external ontologies that are used. This figure does

not include interaction and resource subclasses, which can be seen in Figure 3.2.

Figure 3.4: Complete service model

We can see the original 6-point interaction star as the core of the model. As

such, an Interaction, which is considered as a core element of service system

modeling, may be characterized by the roles that perform it, the processes that

it belongs to, its goals and locations, its temporal description and temporal

relation to other interactions and the inputs and outputs of resources. A

Service System entity was added to the model to group a collection of

interactions.

A Role might represent customers, managers, computer agents and so

on. We can associate a role to their respective stakeholder with the property

belongsToBusinessEntity. That property connects a Role to a Business

1http://creativecommons.org/licenses/by/3.0

35

CHAPTER 3. SERVICE SYSTEM MODELING

Entity2 of the ontology GoodRelations [42]. This ontology was chosen because

it is widely accepted as a valuable Linked Data vocabulary for describing

products and services [14][41]. A Business Entity from GoodRelations “‘...

represents the legal agent making (or seeking) a particular offering” [1], which

makes it an adequate match for expressing the stakeholder of a Role.

A Process indicates an internal business process of the service system. This

entity is particularly useful to filter interaction flows based on certain processes.

The usefulness of such an entity can be improved by connecting it to modeled

processes. As such, we link it to a Process of the BPMN 2.0 ontology [67].

In future work other connections to different process modeling vocabularies may

be considered in order to better expand the usefulness of this entity.

A Goal expresses a motivation for the occurrence of the interaction. This

entity is not connected to any element of the Linked Data Cloud because its

meaning is contained in the context of its service system. Moreover, no relevant

ontologies were found that could be used to extend the information of this

entity.

A Location expresses a conceptual location where an interaction occurs,

such as a room or a store. Because an interaction that takes place in a certain

room also takes place in that room’s floor, department, building and so on,

the property isLocatedIn connects two instances of Location to impose a

hierarchy level. This enables, for instance, associating an interaction to a room

and finding that interaction when querying that room’s building. This entity

has also the property isLocationFrom that connects it to a Feature of the

ontology Geonames [88]. This enables us to give an unambiguous geographical

context to any Location, since a Geonames Feature represents any city,

country, continent and so on and also uses a hierarchy level.

Time is the entity that gives a temporal context to an interaction. It

is connected to a Temporal Entity of the OWL-Time ontology [44]. This

connection enables a great level of detail for temporal descriptions, such as

the date and time of its occurrence with DateTimeDescription or its

duration with DurationDescription. In addition, it is also possible to

define temporal relations between interactions through the use of properties such

as intervalBefore, intervalEquals or intervalAfter.

A Resource represents some input or output of the service system. As

such, an interaction can be related to a resource by four different properties:

receivesResource when it is being introduced from outside of the service

system, createsResource when it is created from within the service system,

consumesResource when it is consumed from within the service system

and returnsResource when it is provided to the outside of the service

system. Resources can be connected to two elements from different ontologies:

2http://www.heppnetz.de/ontologies/goodrelations/v1#BusinessEntity

36

3.3. THE LSS-USDL MODEL

Quantitative Value3 from GoodRelations [42], so we may specify quantities,

and Resource from DBpedia [7], so we may give an unambiguous semantic

value.

As we discussed in the previous section, Interaction and Resource also

have subclasses to better express their nature. Their usage, however, is not

mandatory, and other subclasses might be used instead if they are a better fit

to the service system that is being modeled. That is possible because both

Interaction and Resource are subclasses of Concept4 from the SKOS5

ontology [46]. This means that they are concepts that can be extended by

concept schemes [64]. With that in mind, we can create a Concept Scheme6

from SKOS for Interaction and another for Resource, create their respective

subclasses and add them to their respective concept schemes through the SKOS

property hasTopConcept7. In a similar way, if someone will benefit from a

different set of subclasses, they may create a new concept scheme and assign the

new subclasses as top concepts. This capability improves the model’s adaptivity

and capacity to improve.

3http://www.heppnetz.de/ontologies/goodrelations/v1#QuantitativeValue
4http://www.w3.org/TR/skos-reference/#Concept
5Simple Knowledge Organization System
6http://www.w3.org/TR/skos-reference/#ConceptScheme
7http://www.w3.org/TR/skos-reference/#hasTopConcept

37

4
Tool support

This chapter presents the two proof of concept tools that were developed in

order to demonstrate the model’s usefulness for real world usage.

The first section briefly explains the motivation for the development of these

tools. The second section describes the first tool, a graphical editor for the

model. Finally, the third section describes the second tool, a translator to and

from a different model, Linked USDL.

4.1 Motivation

In the previous chapter we discussed the details of our proposed service system

model. However, the LSS-USDL model was developed not only for academic

purposes, but also for real world usage. Hence, we need to build a bridge

between the theoretical approach presented in the previous chapter and the

expected model usage in the field. To do that, we discuss two software tools

that aim to demonstrate the applicability of our model for real world usage.

The first tool is an LSS-USDL graphical editor. It intends to prove that

it is possible to express modeled service systems in an easily understandable

graphical notation and also to edit them using that same notation.

The second tool is a translator to and from Linked USDL [18]. This not

only demonstrates the model’s ability to generate custom service descriptions

such as a customer-based description like Linked USDL, but also proposes an

easy transition from service systems expressed in other models to LSS-USDL.

Both tools were developed in Ruby1 and bundled into one common we-

bapp, because their features bring greater value when combined together. That

webapp was developed using the framework Ruby on Rails2. In the develop-

1http://www.ruby-lang.org
2http://rubyonrails.org

39

CHAPTER 4. TOOL SUPPORT

ment environment the application is connected to a SQLite3 database, and in

the production environment it is connected to a PostgreSQL4 database. The

production environment to which the application was deployed was Heroku5,

because it supports all the used technologies and provides a free hosting service.

All the code versioning was done in Git6 and its repository can be found at

https://github.com/rplopes/lss-usdl editor as open source with the

Creative Commons Attribution 3.0 Unported License7, in order to allow future

improvements from the open source community. A live version was deployed at

http://lss-usdl-editor.herokuapp.com for demonstration purposes.

The next sections describe in greater detail each of the developed tools.

4.2 Graphical LSS-USDL editor

This tool is a prototype that presents a GUI that enables the modeling of service

systems without the need to write RDF statements. This is a very important

proof of concept not only because service systems are typically designed by

managers and business owners, whose technical skills do not usually embrace

fluency with programming languages such as RDF, but also because service

systems can easily achieve great levels of complexity, so a good UI for data

modeling is required to avoid high cognitive work and facilitate rapid data input.

This tool uses the front-end framework Twitter Bootstrap8 to allow rapidly

styling the interface, and Javascript and Coffeescript9 for small improvements of

the user interface.

The application architecture follows an MVC10 approach, as depicted in

Figure 4.1. This means that when a user makes a request to the application, it

is received to a router (1) that forwards it to the corresponding controller (2).

The controller is where we may find the application logic. The controller then

fetches the models it needs (3). A model is a data entity, such as a service

system or an interaction. The desired models are fetched from the database

(4, 5) and returned to the controller (6). After all the controller’s operations,

it returns its corresponding view (7), which will generate the HTML page that

the user will see (8).

3http://www.sqlite.org
4http://www.postgresql.org
5http://heroku.com
6http://git-scm.com
7http://creativecommons.org/licenses/by/3.0
8http://twitter.github.io/bootstrap
9http://coffeescript.org

10Model-View-Controller

40

4.2. GRAPHICAL LSS-USDL EDITOR

Figure 4.1: Architecture for the graphical editor tool

4.2.1 User accounts management

This LSS-USDL editor is an open source tool that any business can download

and install in their servers or simply use the provided public version11. But

because it models internal details of service systems, viewing and editing rights

must be taken into account.

Due to that fact, this tool requires user registration to get access to its

contents. In the public version of this tool any visitor may create an account,

but for business installations the account creation option may be available just

for administrators, to block outside access to the service systems models.

In addition, write permissions are only granted to the author of a service

system. For a business installation this restriction can be removed by changing

the source code. If a different user needs a model of an existing service system

but with some alterations, it is possible to export it to a new editor entry and

edit it, while still leaving the original model untouched.

Figure 4.2 shows some interfaces available for user accounts management.

Figure 4.2: Register new account screen and account management menu

11http://lss-usdl-editor.herokuapp.com

41

CHAPTER 4. TOOL SUPPORT

4.2.2 Entities management

The core feature of this tool is the management of service system entities

according to the LSS-USDL model. A user may view, create, edit or remove

any element of a service system, including the service system itself. An example

of editing an entity is shown in Figure 4.3.

Figure 4.3: Editing a resource entity

All created entities are associated to a single service system. Service systems

can be managed in the home screen. When one is selected, it is possible to

manage its entities.

In the top navigation bar there are links for managing Business Entities,

Roles, Goals, Locations, Processes and Resources. In the front page of a service

system it is also possible to manage its Interactions. In the Interaction’s form

it is also possible to edit its temporal data and connect it to existing service

system entities.

For this feature we must consider various compromises. Assigning an entity

to a specific service system makes it easier to create scopes and avoid much

clutter, but on the other hand it makes it impossible to assign to an interaction

entities of another service system (they have to be copied). Moreover, entities

from external vocabularies such as Business Entity and Temporal Entity

can hold more data than what this tool manages, but offering a complete

solution for those entities would greatly increase the system’s complexity with

little to no added value to our scope. Because of these compromises we must

not label this tool as the best option for modeling any possible service system,

42

4.2. GRAPHICAL LSS-USDL EDITOR

but rather as a proposal among many potential others that is best suited for

some scenarios.

4.2.3 Connection to the LDC

As we discussed previously, many entities of a service system are connected to

elements of the Linked Data Cloud to enable better data description and to

facilitate data analysis across different service systems. It is thus important to

provide a practical and easy to use interface to enable such connections. An

example of such an interface in this tool is shown in Figure 4.4.

Figure 4.4: Accessing the Geonames Linked Data

When a process has already been modeled using the BPMN 2.0 ontology [67]

we can connect it to a service system’s Process in its form by providing the

corresponding URI. In future work this simple approach could be extended by

allowing connecting to other process model notations or by parsing the process

found and showing some additional information in the tool’s UI.

To add a DBpedia [7] Resouce to a service system’s Resouce there is

also a field in its form to input its URI. After saving, we can see the name of

the DBpedia Resource and a link to its unique web page.

Lastly, to add a Geonames [88] Feature to a service system’s Location

there is a hierarchical tree view of the elements to choose from. This means

that if we want to choose Portugal we just need to select Europe, revealing

the list of European countries, and then select our desired option. This greatly

improves user input because it does not require typing names (thus avoiding

memorization, errors and ambiguities) and it does not overflow the user with

meaningless data (e.g. if we want to select a city, we do not see cities from other

countries). This interface was adapted from the work of Thomas Haukland [40].

43

CHAPTER 4. TOOL SUPPORT

4.2.4 Service systems visualization

The core visualization of a service system is the flow of its interactions. When

a user selects a service system from the main menu a page is displayed showing

its interactions in an extended service blueprint view. This view highlights the

temporal dependencies between different interactions and divides them according

to their respective areas of action, as required by the traditional service blueprint

approach [81].

However, one of the goals of this tool is to prove that service systems modeled

in LSS-USDL may have different representations according to a user’s needs.

Because of that there is an option to change the service system visualization

methods. The visualization methods supported in this tool are the aforemen-

tioned extended service blueprint and also a plain list that orders interactions

based on their temporal relations and displays their connections to the service

system’s elements. In future work other visualizations can be added.

Finally, the service system’s visualization can also be manipulated based on

filters. There are filters for Roles, Goals, Locations, Processes and Resources,

but more filters can be added in future work. The Location filter obeys to

the hierarchy found in that class, so if we have an interaction that happens

in a room and we filter by interactions happening in that room’s building,

that interaction will still appear. The use of filters is particularly useful for

controlling the data that should be presented to certain stakeholders. Figure 4.5

shows the extended service blueprint view with the list of available filters.

Figure 4.5: The extended service blueprint view and filters list

44

4.2. GRAPHICAL LSS-USDL EDITOR

4.2.5 Import/Export from/to RDF files

In order for this tool to be an effective alternative to editing LSS-USDL models

directly with RDF code it must provide the ability to seamlessly switch between

the RDF representation to the tool’s data model. This means that it must

be possible to import an existing RDF file containing a service model and to

export data to another RDF file. The import interface is shown in Figure 4.6

and the export interface is shown in Figure 4.7.

Figure 4.6: File import interface after clicking “Import from file” button

Figure 4.7: Export to Linked USDL added to the export options

This translation to and from RDF is done with the help of the Ruby

gems LinkedData12 for dealing with the RDF semantic graph in Ruby and

RDF-Turtle13 to import/export RDF code in Turtle notation. The Turtle

notation [12] was chosen instead of other notations such as XML or N-Triples

because of the abbreviations and clean syntax that make it the easiest to write

RDF statements manually and to read and understand them.

The import process is done by fetching the semantic graph described in the

12http://rubygems.org/gems/linkeddata
13http://rubygems.org/gems/rdf-turtle

45

CHAPTER 4. TOOL SUPPORT

file and then applying several queries in which we extract all the information

needed to save in the tool’s data model. The export process is done by saving

to a new semantic graph all the information in the data model of the current

service system and then writing the resulting graph to an RDF Turtle file.

The export process also makes use of the applied filters to generate a file

with only the requested information. As such, if we want to show to customers

only the interactions that concern them, it is easy to generate an RDF file with

just that information and thus hide internal data without needing to remove it

from the original service model.

Because this tool is a proof of concept, the import process can not find all

possible information contained in the RDF file. Elements from external vocab-

ularies such as Quantitative Value from GoodRelations [42] or Temporal

Entity from OWL-Time [44] are able to hold much more information than

what is presented in the tool but, as we previously discussed, trying to get all

possible data would require a big effort for very little additional value. A more

complete import process would, then, be something to consider for future work.

4.3 Linked USDL export/import tool

This tool acts as a proof of concept that shows that it is possible to export

an LSS-USDL service model into different service descriptions and also to make

use of existing service descriptions to rapidly build an LSS-USDL service model.

This was added as a feature to the previously described graphical editor because

the two tools provide greater value when combined: it makes it possible to edit

a service system by importing a Linked USDL file and the export feature is

now extended to support exporting both to an LSS-USDL or Linked USDL file.

Figure 4.8 depicts the architecture of this tool, integrated in the webapp.

When the user’s request for an import or export operation reaches the controller,

the special model SemanticWorker is called. This model does not represent

any entity nor does it have a related database table. It does, however, interact

with the database multiple times in order to create new entities from the provided

RDF file or create a new semantic graph based on the existing entities. Its

response (6) will be a confirmation for imports or a semantic graph for exports.

If the user is importing a file, the controller will then call the view of the newly

imported service system (7a) to be displayed to the user (8a). If the user is

exporting a service system, the controller will return the exported RDF file (7b).

The import/export feature of the previous tool also follows this architecture.

46

4.3. LINKED USDL EXPORT/IMPORT TOOL

Figure 4.8: Architecture for the Linked USDL export/import tool

4.3.1 Mapping between the two models

One of the biggest challenges when creating a tool that translates data from

a model to another is to find the appropriate mappings that enable such a

translation. Table 4.1 resumes the findings on those mappings.

LSS-USDL Linked-USDL

Service System Service

Customer Interaction Interaction Point

Role Interacting Entity

Time Time Spanning Entity

Resource rdf:Resource

hasInteraction hasInteractionPoint

isPerformedBy hasInteractingEntity

hasTemporalEntity spansInterval

receivesResource receives

returnsResource yields

Table 4.1: Mapping of LSS-USDL elements to Linked-USDL elements

Mapping Service Systems and Interactions to the Linked USDL elements

Service and Interaction Point is straightforward. The other elements,

however, require closer attention.

For Roles we may find Interacting Entity, which can hold an Inter-

action Role or a Business Role. Both these entities can be further

specified through the use of SKOS concept schemes [64].

The closest element to LSS-USDL Time is Time Spanning Entity. However,

that is a superclass for Interaction Point. This means that the connection to

OWL-Time is done directly in the interaction. So while in LSS-USDL we have

47

CHAPTER 4. TOOL SUPPORT

an interaction connected to Time connected to the OWL-Time ontology with

the property hasTemporalEntity, in Linked-USDL we have an interaction

connected directly to that ontology with the property spansInterval.

A Resource is handled in Linked USDL as an RDF Resource. Its

connection to an interaction can be indicated by the properties receives for

input and yields for output. These are similar to the LSS-USDL properties

receivesResource and returnsResource, respectively. The other two

properties for LSS-USDL Resources (createsResource and consumesRe-

source) are absent in Linked USDL because they concern internal operations.

4.3.2 Import/Export from/to RDF files

The work on the translation between Linked USDL RDF code and LSS-USDL

objects in the graphical editor’s data model builds on the previous efforts to

import and export RDF files described in the previous section. We can see

integrated functionality in Figures 4.6 and 4.7. This means that the import

process is based on queries to the semantic graph and the export process is

based on populating a new semantic graph and writing it to an RDF file using

the Turtle notation.

As with the previously described efforts, this work is intended to be a proof

of concept, not an exhaustive conversion tool. As such, the data it extracts

from Linked USDL files might be just a portion of the original data fitting our

needs.

Moreover, since the mapping between the two models is not 100% complete,

not only do we lose the information that is not present in the mapping, but we

also get an incomplete service model with no information on processes, goals and

locations and with no interactions besides the ones from customers. However,

this incomplete service model can be seen as a “quick start” and a time saver

to model services in LSS-USDL.

48

5
Evaluation

This chapter presents the evaluation process used to validate the usefulness and

applicability of our model through the use of three different use cases.

The first section briefly describes the motivation for this evaluation process

and its approach. The second, third and fourth sections describe how the evalu-

ation was performed by recurring to different use cases and different approaches,

one per section. Finally, the fifth section discusses the results of the evaluation.

5.1 Evaluation approach

The model presented in Chapter 3 is, as previously stated, an important proposal

that aims towards better formalization and standardization of service systems

management. It is, thus, of paramount importance to evaluate our findings and

proposals so as to understand the feasibility of such a solution to our problem.

In order to do so, three different use cases have been chosen. These use

cases are examples of service systems found in the literature. These examples

have been originally modeled according to the service blueprint method [81], so

it is possible to adapt them to our model and draw conclusions afterwards.

In addition, two software tools, described in the previous chapter, were built

in order to demonstrate the applicability of our model to real world usage. The

first tool, a graphical editor, is intended to prove that it is possible to express

modeled service systems in an easily understandable graphical notation and also

to edit them using such a notation. The second tool, a translator to and

from Linked USDL [18], intends not only to demonstrate the model’s ability

to generate custom service descriptions such as a customer-based description

like Linked USDL, but also to propose an easy transition from service systems

expressed in other models to ours.

Each of the following sections will introduce a different use case. Each use

case will be used differently in order to provide a richer evaluation.

49

CHAPTER 5. EVALUATION

5.2 Express mail delivery

Simplicity and ease of understanding were the top requirements for the first

use case, as our goal is to test our model without losing too much time with

complex services and lengthy descriptions. The first use case is, then, an express

mail delivery service system that was originally modeled in order to illustrate

the features of a service blueprint [39].

Based on the service blueprint of the express mail delivery use case, depicted

in Figure 5.1, we may build an RDF file with that information represented as

an LSS-USDL service system. This and all other RDF files in this chapter use

the Turtle notation, due to its cleanness and high readability [12].

Figure 5.1: Express mail delivery original service blueprint [39]

The complete RDF code for this example can be found in use cases/1

- Express Mail Delivery.ttl of the model’s code repository1. Listing 5.1

shows an extract of that code with the necessary data to describe the first

interaction.

Listing 5.1: Express mail delivery extract

1 :Sender a lss-usdl:Role;

2 rdfs:label "Sender";

3 rdfs:comment "Customer who intends to send a mail to somebody else"

1https://github.com/rplopes/lss-usdl

50

5.2. EXPRESS MAIL DELIVERY

.

4

5 :SendMail a lss-usdl:Goal;

6 rdfs:label "Send mail";

7 rdfs:comment "Customer wants to send express mail to a specific

destiny".

8

9 :SenderHome a lss-usdl:Location;

10 rdfs:label "Sender home";

11 lss-usdl:isLocatedIn :SenderRegion.

12

13 :SenderData a lss-usdl:KnowledgeResource;

14 rdfs:label "Sender data";

15 rdfs:comment "Name, address, etc. of sender".

16

17 :ReceiverData a lss-usdl:KnowledgeResource;

18 rdfs:label "Receiver data";

19 rdfs:comment "Name, address, etc. of receiver".

20

21 :MailDelivery a lss-usdl:Process;

22 rdfs:label "Mail delivery".

23

24 :CustomerCallsTime a time:ProperInterval;

25 time:intervalEquals :CustomerOrderIsRegisteredTime.

26

27 :CustomerCalls a lss-usdl:CustomerInteraction;

28 rdfs:label "Customer calls";

29 lss-usdl:performedBy :Sender;

30 lss-usdl:hasGoal :SendMail;

31 lss-usdl:hasTime [

32 a lss-usdl:Time;

33 lss-usdl:hasTemporalEntity :CustomerCallsTime

34];

35 lss-usdl:hasLocation :SenderHome;

36 lss-usdl:belongsToProcess :MailDelivery;

37 lss-usdl:receivesResource :SenderData;

38 lss-usdl:receivesResource :ReceiverData.

As we can see, the code looks clean and self-explanatory. For the interaction

“Customer calls” we have to define the role “Sender”, the goal “Send mail”,

the location “Sender home”, the process “Mail delivery” and the two resources

that the service system is receiving, “Sender data” and “Receiver data”. We are

also stating that this interaction is happening at the same time of interaction

“Customer order is registered”.

By looking at the complete source code in the repository we can see that the

service system is fully described without losing information from the original de-

scription (considering that some slight adaptations were done for more cleanness).

Furthermore, new data is added that enriches the context information.

51

CHAPTER 5. EVALUATION

In conclusion, this use case shows that this model seems to be a feasible

solution for modeling simple service systems.

Now that we have the full service model in RDF, we can import it to the

graphical editor. This should validate not only the correctness of that tool but

also the graphical representation of the model.

In http://lss-usdl-editor.herokuapp.com we can import an exist-

ing service model by pressing the “Import from file” button and dragging the

file to the new gray area (alternatively, we can click that area and select the

desired file). The resulting service system for this use case can be viewed in

the entry “Express Mail Delivery” of the deployed graphical editor2. Figure 5.2

shows a screenshot of that entry.

Figure 5.2: Extended service blueprint of the express mail delivery use case

As we can see, the visual result is very similar to the original service model

in [39]. The additional information such as resources or locations is also visible.

This experiment allowed us to validate the correctness of the import tool

and also proved that our model is not only a feasible solution for modeling

service systems, but is also able to represent them in a graphical notation that

is easy to understand and use to study the corresponding service system.

5.3 Bookstore kiosk

In our second use case we require a more complete service system, in order to

evaluate the model’s applicability to more complex, detailed scenarios. Because

2http://lss-usdl-editor.herokuapp.com/service systems/5

52

5.3. BOOKSTORE KIOSK

the main field of this research is computer science, it is also desirable to look for

use cases that do not alienate that field. Based on these premises, e are going

to explore the example of a bookstore kiosk used by customers and employees to

achieve their goals [37]. Figures 5.3 and 5.4 depict the original service blueprints

for the customer interactions and employee interactions, respectively.

Figure 5.3: Customer interactions in the bookstore kiosk original service

blueprint [37]

In this use case we start by modeling the service system using the graphical

editor. This enables us to evaluate the usefulness of the editing tool and how it

compares to modeling by writing the RDF code. The resulting service system

is shown in the entry “Bookstore kiosk” of the deployed graphical editor3.

Figure 5.5 shows a screenshot of that entry.

As we can see, this service system is undoubtedly more complex than the

one in the last use case. Using the graphical editor, however, greatly facilitated

and accelerated its modeling. It is thus possible to conclude that this tool is

not only a valid alternative to coding the RDF statements for people who don’t

know the RDF syntax, but is also generally faster and easier. However, as we

discussed in the previous chapter, this tool makes some compromises between

ease of use and data completion, so it is not necessarily the best alternative in

3http://lss-usdl-editor.herokuapp.com/service systems/6

53

CHAPTER 5. EVALUATION

Figure 5.4: Employee interactions in the bookstore kiosk original service

blueprint [37]

all scenarios. Furthermore, since this is a prototype, some interaction elements

could be improved, such as mass-assigning common data to many interactions,

which currently have to be assigned individually.

With the service model in the editing tool it is possible to apply filters to get

different views of the service system. As an example, we may apply a filter that

shows the workflow for the customers interface (filtering by process “Customer

interactions”) and another filter that shows the workflow for the employees

interface (filtering by process “Employee interactions”). These two filters show

the adapted service models found in Figure 5 and 6 of [37], respectively.

The RDF code for the customers interface workflow can be found in use

cases/2 - Bookstore Kiosk.ttl of the model’s code repository. This

file was created by applying the aforementioned filter and selecting the option

“Export filtered data to LSS-USDL file”. As we can see, the resulting file, which

describes just a portion of the original service model, without many line breaks

and comments, is larger than the file of the previous use case. By analyzing

the resulting file we may conclude that we now have a valid LSS-USDL service

model in a valid RDF notation. This means that this tool is indeed capable of

building service models and providing them in the semantic notation we desired.

Compared to building service models directly with code, this tool has the

disadvantage of outputting code that lacks the organization and comments that

54

5.4. SAAS WEBAPP

Figure 5.5: Extended service blueprint of the bookstore kiosk use case

we saw in the previous use case. This has the potential of making the RDF code

harder to understand by humans. However, when code readability is required,

the effort of modeling the service system with this tool and after exporting

reorganizing elements and commenting is still much less than the effort of writing

all the code without this tool.

5.4 SaaS webapp

Since the first use case was a physical service system and the second was a

hybrid between physical and digital service system, it is now relevant to explore

a completely digital example. As such, a SaaS4 is a very interesting use case

to consider, since it is a growing trend in software with the single purpose of

enabling the execution of a service system [87]. The third use case is, then,

a SaaS webapp for sharing photos of travel destinations, that was modeled

as a service blueprint during its service design phase [55]. Its original service

blueprint is depicted in Figure 5.6.

We have previously validated the LSS-USDL model, the graphical editor tool

and the import and export features of that tool. We now focus on validating

the tool from translating Linked USDL into LSS-USDL and further testing our

model in the process.

In order to do so, the service system in this use case has been modeled in

Linked USDL. The RDF code of that service description can be found in use

cases/3 - klinkr - Linked USDL.ttl of the repository. This file was

4Software as a Service

55

CHAPTER 5. EVALUATION

Figure 5.6: SaaS webapp klinkr original service blueprint [55]

then imported into the graphical editor tool, just like the file from the first use

case. The tool can detect automatically if the file refers to an LSS-USDL or

Linked USDL service system, so the process is exactly the same. The resulting

service system is shown in the entry “klinkr” of the deployed graphical editor5.

Figure 5.7 shows a screenshot of that entry. Note that this service system looks

much more incomplete because it was based on a Linked USDL description.

As we can see, the amount of information that can be collected through a

Linked USDL service description is not as complete as through an LSS-USDL

one. Because Linked USDL is a service description language for customer

interactions, all the service interactions that happen in the other areas of action

are omitted. Moreover, Linked USDL does not include concepts such as goals

or interaction locations.

This means that the resulting LSS-USDL service model will generally lack

completeness. However, after this first automatic generation, it is possible to

fill the remaining data. Hence, such a tool can be seen as a quick start for

modeling service systems in LSS-USDL faster than if no conversion was done.

We can now proceed to export the generated service model into an LSS-

USDL file. the corresponding RDF code can be found in use cases/3 -

klinkr.ttl of the repository. After analyzing the generated code we may

conclude that this tool does indeed enable the rapid creation of LSS-USDL

service models based on existing Linked USDL service descriptions.

5http://lss-usdl-editor.herokuapp.com/service systems/7

56

5.5. FINAL REMARKS

Figure 5.7: Extended service blueprint of the SaaS webapp use case

We may also export the service model into a Linked USDL file. This action

is redundant because we are just generating a file with the same information of

the original file we imported. However, it demonstrates the correctness of that

tool. And since we already have the original file, we may compare the two and

conclude that both import and export features are, indeed, working as expected.

5.5 Final remarks

The evaluation of our model was done through the use of three different use

cases found in the literature. Those use cases were already modeled in a similar

notation, the service blueprint, so that we could be able to compare our findings

with the authors’ work and thus achieve a higher level of confidence of our

model’s evaluation.

In the first use case we tested the model’s ability to describe a simple

service system and the graphical editor’s ability to import it and display it in

an easy to understand visual representation. In the second use case we tested

the graphical editor’s edition capabilities and its export functionality. Finally,

in the third use case we tested the Linked USDL import and export tool, the

graphical editor’s service systems visual representation and its ability to export

data.

In all these use cases we also had the opportunity to see the different service

systems modeled in LSS-USDL. Comparing their service models with the original

work found in the literature, the results are very encouraging and suggest that

LSS-USDL is a viable option to model service systems.

The evaluation of the developed tools also yields positive results. The

57

CHAPTER 5. EVALUATION

migration between LSS-USDL RDF code, Linked USDL RDF code and the

editor’s data model, despite not being exhaustive, successfully translates the

most relevant properties with minimal interaction for the user. The graphical

editor, although it could have more elaborate user interaction mechanisms to

deal with repetitive data input, is still a great contribution for accelerating the

modeling of service systems and for visualizing them in an easier to understand

graphical notation. Because these tools serve, themselves, as an evaluation for

our model, we can conclude that they indeed prove the model’s usefulness and

capability for real world usage.

To sum up, after our evaluation this model shows positive signs towards

service system modeling and real world usage. Our graphical editor proves it is

possible to assign a clear visual representation to our model’s service systems

and also that it is possible to edit them without prior programming skills. The

Linked USDL translator tool proves that this model can provide easy transitions

from other models and is capable of generating different service descriptions.

58

6
Conclusions

This chapter presents the conclusions of our work and suggests possible future

work to be done.

The first section briefly summarizes the contents of this thesis and the

approach that we followed. The second section discusses our findings regarding

the results we achieved. The third section describes how this work may benefit

our society. Lastly, the fourth section suggests some future work possibilities to

improve our model and its tool set.

6.1 Summary

Our main goal in this research work was to conceive a model for describing

service systems as a whitebox in a computer readable notation, so that we

could perform automation tasks such as business simulations, service analytics

or automatic comparisons between different service systems.

In our state of the art study we discussed many models for describing service

systems. Those models, however, did not produce computer readable information

or did not present a whitebox approach, thus they were not capable of fulfilling

our goal. However, their study enabled us to identify the most common service

system attributes found in the literature.

Building upon the aforementioned attributes, the journalism interrogative

pronouns and the service blueprint notation we were able to classify a service

system as a flow of service interactions and create the 6-point interaction star

depicted in Figure 3.1. This star model would be the core of our final model.

Our final model would also have to use Semantic Web technologies and

include external vocabularies from the Linked Data Cloud. We chose to name

it Linked Service Systems for USDL (LSS-USDL) because it builds upon the

research efforts of the USDL research group and because it uses Linked Data

to model the full length of the service system.

59

CHAPTER 6. CONCLUSIONS

The result of combining the Semantic Web principles to the 6-point star

model is our final model, depicted in Figure 3.4. This model is our proposal

towards the fulfillment of our objectives. It is built in RDF and its code

is freely available at https://github.com/rplopes/lss-usdl under a

Creative Commons Attribution 3.0 Unported License1.

In order to demonstrate the usefulness of our model in real world usage

and also to provide additional value, two prototype software tools were also

developed. The first tool was a graphical editor that provided easier to un-

derstand visual representations of our machine-readable model’s service systems

and faster modeling capabilities. The second tool was a converter to and from

Linked USDL that provided easy migrations between different service description

languages. These two tools were bundled in a webapp that was deployed on-

line at http://lss-usdl-editor.herokuapp.com. Its code is also freely

available at https://github.com/rplopes/lss-usdl editor under the

same license as the LSS-USDL model.

Lastly, we proceeded to the evaluation of this model. To do so, we studied

three different use cases with three different approaches and discussed the results.

Our findings are further explained in the next section.

6.2 Findings

In Section 5.5 we discussed our findings over the model’s evaluation process. We

found encouraging results that suggested that LSS-USDL is a viable option to

model service systems. We also found that the tools yielded positive improve-

ments to the model, despite being prototypes that lack completeness expected

in a final product.

Most of the research efforts were guided towards providing a solid model

and a serious evaluation with tools and use cases. Due to such evaluation

the model’s credibility is strengthened. This lets us hold bigger trust in its

capabilities for modeling service systems. Thus, we may conclude that, although

many improvements are possible upon further research, the proposed model is

now a valid tool for organizations to model their service systems.

The fact that this model enables a machine-readable description of service

systems brings many other interesting possibilities that could not be further

explored due to scope constraints. This area certainly holds many new inter-

esting findings that will not only further validate our model, but also bring

unprecedented value to organizations and their stakeholders. Some of that value

is further explained in the next section.

1http://creativecommons.org/licenses/by/3.0

60

6.3. IMPLICATION FOR SOCIETY

6.3 Implication for society

Our ultimate goal when researching for a computer-readable service system model

is to bring new value to organizations and their stakeholders and thus making

a positive impact in society.

As we discussed in Chapter 1, the services sector is the most influential

economic sector of modern society [8][56][85]. Yet, it is still the sector with less

scientific understanding [21]. Our model is thus a proposal to enable a much

needed better scientific understanding of this dominant economic sector. It is

also a catalyst for the Semantic Web and Linked Data, which are yet available

only for passive retrieval [68].

Having a tool that enables modeling service systems immediately brings

better services documentation and standardization. This has the potential to

increase productivity levels at organizations and also enables governments and

foundations achieving higher levels of transparency.

However, providing a machine-readable notation for modeling service systems

enables a wide range of more significant advancements to science and society.

Although our approach did not focus on areas such as service analytics or

simulations, the potential of our model is those areas is very interesting. This

means that we are setting the building blocks that may enable, among other

advantages:

• Standardized services catalogs for customers, through the automatic extrac-

tion of customer-relevant information, as demonstrated with the proposed

Linked USDL conversion tool. These catalogs will greatly improve con-

sumers’ experience of browsing and choosing services.

• Better business decisions based on simulations though our model. This will

result in better performance levels for businesses in the services sector.

• Better understanding of how services are operating and where they might

need improvement based on service analytics. This enables a better under-

standing of customers’ behavior and possible bottlenecks, which ultimately

leads to added value for both parties.

These last improvements to society are now possible to achieve upon further

research work. The future work that will enable such improvements is further

explained in the next section.

6.4 Future work

As we discussed, our model presents a real improvement to businesses and to

society in general. However, its biggest value lies within its potential as a

61

CHAPTER 6. CONCLUSIONS

building block to future work.

Below we can find a list of proposed approaches for future work that builds

upon our model:

• Further service systems research: A great effort was put into service

systems research, in order to reach a solid proposal for a service model.

However, and since this area spans across many different fields such as

economics and management, there is room for improvement, specially if

studied in a different context than computer science. Moreover, despite

the positive results of our findings, it is advised to expect further research

with this model to allow it to reach a better maturity level.

• Better tool support: The developed tools acted just as proof-of-concept

prototypes to demonstrate the model’s applicability and usefulness, and so

they lack many interesting features and a maturity level that is expected

of final products. It would then be interesting to develop more robust

tools. Based on our findings, we would recommend exploring more data

customization options and better user interfaces in an editor tool, and a

more intelligent converter that could derive new values based on existing

information, such as calculating the service price for Linked USDL based

on the costs expressed in LSS-USDL.

• Business intelligence: Having service systems modeled in this notation, it

is possible to apply business intelligence methods based in it. One possible

approach would be to use the principles of System Dynamics [52]. This

would allow developing simulation experiments [6] and service analytics [20].

To sum up, our findings show very interesting results for businesses and

society, but the potential it creates for future research is even more impactful

and exciting.

62

Bibliography

[1] GoodRelations Language Reference. http://www.heppnetz.de/

ontologies/goodrelations/v1. Accessed at 31/05/2013.

[2] Linked-usdl. http://www.linked-usdl.org. Accessed at 14/01/2013.

[3] Al-Debei, M. The design and engineering of innovative mobile data

services: An ontological framework founded on business model thinking.

School of Information Systems, Computing and Mathematics (2010).

[4] Alt, R., and Zimmermann, H. Preface: introduction to special section–

business models. Electronic Markets 11, 1 (2001), 3–9.

[5] Alter, S. Service system fundamentals: Work system, value chain, and

life cycle. IBM Systems Journal 47, 1 (2008), 71–85.

[6] An, L., and Jeng, J.-J. On developing system dynamics model for

business process simulation. In Simulation Conference, 2005 Proceedings of

the Winter (2005), IEEE, pp. 10–pp.

[7] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R.,

and Ives, Z. Dbpedia: A nucleus for a web of open data. In The semantic

web. Springer, 2007, pp. 722–735.

[8] Barros, A., Kylau, U., and Oberle, D. Unified service description

language 3.0 (usdl) overview, 2011.

[9] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M.,

Hull, R., Kifer, M., Martin, D., McIlraith, S., McGuinness, D.,

et al. Semantic web services framework (swsf) overview. World Wide Web

Consortium, Member Submission SUBM-SWSF-20050909 (2005).

[10] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M.,

Hull, R., Kifer, M., Martin, D., McIlraith, S., McGuinness, D.,

et al. Semantic web services language (swsl). W3C Member submission 9

(2005).

[11] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M.,

Hull, R., Kifer, M., Martin, D., McIlraith, S., McGuinness, D.,

et al. Semantic web services ontology (swso). Member submission, W3C

(2005).

63

BIBLIOGRAPHY

[12] Beckett, D., and Berners-Lee, T. Turtle-terse rdf triple language.

W3C Team Submission 14 (2008).

[13] Berners-Lee, T. Linked Data - Design Issues, 2006.

[14] Bizer, C., Heath, T., and Berners-Lee, T. Linked data-the story

so far. International Journal on Semantic Web and Information Systems

(IJSWIS) 5, 3 (2009), 1–22.

[15] Blair, A., Debenham, J., and Edwards, J. Requirements analysis

for intelligent decision support systems. In Intelligent Information Systems,

1994. Proceedings of the 1994 Second Australian and New Zealand Conference

on (1994), IEEE, pp. 482–486.

[16] Booth, D., and Liu, C. Web services description language (wsdl) version

2.0 part 0: Primer. World Wide Web Consortium (W3C), June 26 (2007),

W3C.

[17] Cardoso, J., Barros, A., May, N., and Kylau, U. Towards a unified

service description language for the internet of services: Requirements and

first developments. In Services Computing (SCC), 2010 IEEE International

Conference on (2010), IEEE, pp. 602–609.

[18] Cardoso, J., Pedrinaci, C., Leidig, T., Rupino, P., and De Leen-

heer, P. Open semantic service networks. In International Symposium on

Services Science (ISSS’12), Leipzig, Germany (2012).

[19] Cardoso, J., Winkler, M., and Voigt, K. A service description

language for the internet of services. In Proceedings of ISSS (2009).

[20] Chen, Y., Spohrer, J., and Lelescu, A. Three factors to sustainable

service system excellence: A case study of service systems. In Services

Computing, 2008. SCC’08. IEEE International Conference on (2008), vol. 2,

IEEE, pp. 119–126.

[21] Chesbrough, H., and Spohrer, J. A research manifesto for services

science. Communications of the ACM 49, 7 (2006), 35–40.

[22] Chinnici, R., Moreau, J., Ryman, A., and Weerawarana, S. Web

services description language (wsdl) version 2.0 part 1: Core language. W3C

Recommendation 26 (2007).

[23] Christensen, E., and Meredith, G. Web services description language

(wsdl) 1.1.

64

BIBLIOGRAPHY

[24] De Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M.,

Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Oren, E., et al.

Web service modeling ontology (wsmo). Interface 5 (2006), 1.

[25] Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.,

Broekstra, J., Erdmann, M., and Horrocks, I. The semantic web:

the roles of xml and rdf. Internet Computing, IEEE 4, 5 (sep/oct 2000),

63 –73.

[26] Dhanesha, K., Hartman, A., and Jain, A. A model for designing

generic services. In Services Computing, 2009. SCC’09. IEEE International

Conference on (2009), IEEE, pp. 435–442.

[27] Dumas, M., O’Sullivan, J., Heravizadeh, M., Edmond, D., and ter

Hofstede, A. Towards a semantic framework for service description.

[28] Faber, E., Ballon, P., Bouwman, H., Haaker, T., Rietkerk, O.,

and Steen, M. Designing business models for mobile ict services. In

Workshop on concepts, metrics & visualization, at the 16th Bled Electronic

Commerce Conference eTransformation, Bled, Slovenia (2003).

[29] Fensel, D., and Bussler, C. The web service modeling framework wsmf.

Electronic Commerce Research and Applications 1, 2 (2002), 113–137.

[30] Fensel, D., Fischer, F., Kopeckỳ, J., Krummenacher, R., Lambert,

D., and Vitvar, T. Wsmo-lite: Lightweight semantic descriptions for

services on the web. W3C Member Submission 23 (2010).

[31] Ferrario, R., and Guarino, N. Towards an ontological foundation for

services science. Future Internet–FIS 2008 (2009), 152–169.

[32] Ferrario, R., Guarino, N., Janiesch, C., Kiemes, T., Oberle, D.,

and Probst, F. Towards an ontological foundation of services science: The

general service model. Wirtschaftsinformatik, Zurich, Switzerland February

(2011), 16–18.

[33] Fielt, E. Alternative business model canvasses: A Partnering Canvas

example, 2010.

[34] Fielt, E. An Extended Business Model Canvas for Co-Creation and

Partnering, 2010.

[35] Fielt, E. To what extent is the Business Model Canvas constraining? A

Co-Creation Canvas example, 2010.

65

BIBLIOGRAPHY

[36] Fließ, S., and Kleinaltenkamp, M. Blueprinting the service company:

Managing service processes efficiently. Journal of Business Research 57, 4

(2004), 392–404.

[37] Glushko, R. Seven contexts for service system design. Handbook of service

science (2010), 219–249.

[38] Glushko, R. J., and Tabas, L. Designing service systems by bridging

the “front stage” and “back stage”. Information Systems and e-Business

Management 7 (2009), 407–427.

[39] Gremler, D. D. Service blueprinting: Designing service from the cus-

tomer’s point of view. In Phonak Practice Development Conference (2011).

[40] Haukland, T. jeoquery: Browse geonames hierarchy methods. http:

//tompi.github.io/jeoquery/earth.html. Accessed at 21/03/2013.

[41] Heath, T., and Bizer, C. Linked data: Evolving the web into a global

data space. Synthesis lectures on the semantic web: theory and technology

1, 1 (2011), 1–136.

[42] Hepp, M. Goodrelations: An ontology for describing products and services

offers on the web. In Knowledge Engineering: Practice and Patterns.

Springer, 2008, pp. 329–346.

[43] Hill, T. On goods and services. Review of Income and Wealth 23, 4

(1977), 315–38.

[44] Hobbs, J. R., and Pan, F. Time ontology in owl. W3C working draft

27 (2006).

[45] Hong, J., and Bae, D. Software modeling and analysis using a hierarchical

object-oriented petri net. Information Sciences 130, 1 (2000), 133–164.

[46] Isaac, A., and Summers, E. Skos simple knowledge organization system

primer. w3c working group note. World Wide Web Consortium (2009).

[47] Kaner, M., and Karni, R. Design of service systems using a knowledge-

based approach. Knowledge and Process Management 14, 4 (2007), 260–274.

[48] Karni, R., and Kaner, M. Teaching innovative conceptual design of

systems in the service sector. Technological Forecasting and Social Change

64, 2 (2000), 225–240.

[49] Karni, R., and Kaner, M. An engineering tool for the conceptual design

of service systems. Advances in Services Innovations (2007), 65–83.

66

BIBLIOGRAPHY

[50] Kinderen, S. D., and Gordijn, J. e3service: An ontological approach for

deriving multi-supplier it-service bundles from consumer needs. In Proceed-

ings of the 41st annual Hawaii international conference on system sciences

(2008), p. 318.

[51] Kinderen, S. D., and Gordijn, J. Reasoning about substitute choices

and preference ordering in e-services. In Advanced Information Systems

Engineering (2008), Springer, pp. 390–404.

[52] Kirkwood, C. W. System dynamics methods. A quick introduction (2001).

[53] Kruchten, P. The rational unified process: an introduction. Addison-

Wesley Professional, 2004.

[54] Lausen, H., and Farrell, J. Semantic annotations for wsdl and xml

schema. W3C recommendation, W3C (2007).

[55] Lopes, R., Duro, J., Chicória, R., Mateus, A., and Raposeira, P.

klinkr - using concord: A customer centered service design approach. 2012.

[56] Luczak, H., Gill, C., and Sander, B. Architecture for service engineer-

ing — the design and development of industrial service work. In Advances

in Services Innovations, D. Spath and K.-P. Fähnrich, Eds. Springer Berlin

Heidelberg, 2007, pp. 47–63.

[57] Maglio, P., Srinivasan, S., Kreulen, J., and Spohrer, J. Service

systems, service scientists, ssme, and innovation. Communications of the

ACM 49, 7 (2006), 81–85.

[58] Maglio, P., Vargo, S., Caswell, N., and Spohrer, J. The service

system is the basic abstraction of service science. Information Systems and

e-business Management 7, 4 (2009), 395–406.

[59] Magretta, J. Why business models matter. Harvard business review 80,

5 (2002), 86–93.

[60] Maier, M., Emery, D., and Hilliard, R. Software architecture: Intro-

ducing ieee standard 1471. Computer 34, 4 (2001), 107–109.

[61] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,

McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne,

T., et al. Owl-s: Semantic markup for web services. W3C Member

submission 22 (2004), 2007–04.

[62] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Oltramari,

A. Wonderweb deliverable d18, ontology library (final). ICT Project 33052

(2003).

67

BIBLIOGRAPHY

[63] McGuinness, D., Van Harmelen, F., et al. Owl web ontology language

overview. W3C recommendation 10, 2004-03 (2004), 10.

[64] Miles, A., Matthews, B., Wilson, M., and Brickley, D. Skos core:

simple knowledge organisation for the web. In International Conference on

Dublin Core and Metadata Applications (2005), pp. pp–3.

[65] Mora, M., O’Connor, R., Raisinghani, M., Maćıas-Luévano, J.,

and Gelman, O. An it service engineering and management framework (its-

emf). International Journal of Service Science, Management, Engineering,

and Technology (IJSSMET) 2, 2 (2011), 1–15.

[66] Mora, M., Raisinghani, M., Gelman, O., and Sicilia, M. Onto-

servsys: A service system ontology. The Science of Service Systems (2011),

151–173.

[67] Natschläger, C. Towards a bpmn 2.0 ontology. In Business Process

Model and Notation. Springer, 2011, pp. 1–15.

[68] Norton, B., Krummenacher, R., Marte, A., and Fensel, D. Dy-

namic linked data via linked open services. In Workshop on Linked Data

in the Future Internet at the Future Internet Assembly (2010), pp. 1–10.

[69] Oberle, D., Barros, A., Kylau, U., and Heinzl, S. A unified

description language for human to automated services. Information Systems

38, 1 (2013), 155 – 181.

[70] Oberle, D., Bhatti, N., Brockmans, S., Niemann, M., and Ja-

niesch, C. Countering service information challenges in the internet of

services. Business & Information Systems Engineering 1, 5 (2009), 370–390.

[71] OGC. The Official Introduction to the ITIL Service Lifecycle. ITIL Series.

Stationery Office, 2007.

[72] OMG. Introduction to OMG’s Unified Modeling Language (UML), 2012.

[73] Osterwalder, A. The business model ontology: a proposition in a

design science approach. Institut d’Informatique et Organisation. Lausanne,

Switzerland, University of Lausanne, Ecole des Hautes Etudes Commerciales

HEC 173 (2004).

[74] Osterwalder, A., and Pigneur, Y. Business model generation: a

handbook for visionaries, game changers, and challengers. Wiley, 2010.

[75] Osterwalder, A., Pigneur, Y., and Tucci, C. Clarifying business

models: Origins, present, and future of the concept. Communications of the

association for Information Systems 16, 1 (2005), 1–25.

68

BIBLIOGRAPHY

[76] Pedrinaci, C., and Domingue, J. Toward the next wave of services:

linked services for the web of data. Journal of Universal Computer Science

16, 13 (2010), 1694–1719.

[77] Petrovic, O., Kittl, C., and Teksten, R. Developing business models

for ebusiness. Available at SSRN 1658505 (2001).

[78] Poels, G. The resource-service-system model for service science. In Ad-

vances in Conceptual Modeling–Applications and Challenges. Springer, 2010,

pp. 117–126.

[79] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,

Stollberg, M., Polleres, A., Feier, C., Bussler, C., Fensel, D.,

et al. Web service modeling ontology. Applied Ontology 1, 1 (2005),

77–106.

[80] Selic, B. UML 2.0: Exploiting Abstration and Automation, 2004.

[81] Shostack, G. L. Designing services that deliver. Harvard Business Review

62, 1 (1984), 133 – 139.

[82] Söderström, E., Andersson, B., Johannesson, P., Perjons, E.,

and Wangler, B. Towards a framework for comparing process modelling

languages. In Advanced Information Systems Engineering (2006), Springer,

pp. 600–611.

[83] Speiser, S., and Harth, A. Towards linked data services. In Proceedings

of the 9th International Semantic Web Conference (ISWC) (2010).

[84] Spohrer, J., and Maglio, P. Service science: Toward a smarter planet.

Introduction to service engineering (2009), 3–30.

[85] Spohrer, J., Maglio, P., Bailey, J., and Gruhl, D. Steps toward a

science of service systems. Computer 40, 1 (2007), 71–77.

[86] Timmers, P. Business models for electronic markets. Electronic markets

8, 2 (1998), 3–8.

[87] Turner, M., Budgen, D., and Brereton, P. Turning software into a

service. Computer. 36, 10 (2003), 38–44.

[88] Vatant, B., and Wick, M. Geonames ontology. http://www.

geonames.org/ontology, 2012. Accessed at 31/05/2013.

[89] W3C. Web services glossary, 2004.

69

BIBLIOGRAPHY

[90] Zachman, J. Enterprise architecture: The issue of the century. Database

Programming and Design 10, 3 (1997), 44–53.

[91] Zachman, J. John Zachman’s Concise Definition of The Zachman

FrameworkTM, 2008.

[92] Zolnowski, A., Semmann, M., and Böhmann, T. Introducing a co-

creation perspective to service business models. In Enterprise Modelling and

Information Systems Architectures (EMISA 2011) (2011), p. 243.

[93] Zolnowski, A., Semmann, M., and Böhmann, T. Metamodels for

representing service business models.

70

Appendices

71

A
Schedule

In the end of the first semester of this thesis a schedule was elaborated to define

the work that should be done in the second semester. The following is the list

of tasks that were identified and their temporal allocation. This schedule may

also be visualized in the Gannt diagram in Figure A.1.

• Development of the service model using RDF: February

• Creation of model instances in RDF and model evaluation: February and

March

• Script that generates Linked USDL code: March

• Evaluation of the Linked USDL generator script: April

• Software tool to act as an abstraction layer for the service model users:

April and May

• Creation of model instances using the tool and tool evaluation: May

• General improvements and late work: May and June

• Service model and tool documentation: June

• Preparation for the final presentation: July

• Final presentation: July

73

A
P
P
E
N
D
IX

A
.

S
C
H
E
D
U
L
E

Feb Mar Apr May Jun Jul

Service model development

Manual instances creation

Linked USDL export tool development

Linked USDL export tool evaluation

Abstraction layer tool development

Instances creation with the tool

General improvements and late work

Documentation

Final presentation preparation

Final presentation

Figure A.1: Gantt diagram of the project planning. Development tasks are shown in green, evaluation tasks are shown in

cyan and generic tasks are shown in gray.

7
4

The actual temporal execution of these tasks followed some adaptations, but

it was always possible to meet the proposed deadlines.

Firstly, after some consideration, the creation of the visual abstraction tool

was considered to have a higher priority than the Linked USDL mapping tool,

not only because it acted as a stronger proof of concept, but also because

its graphical representation of service systems was needed to get a better

understanding of possible flaws of the model. Therefore, the development and

evaluation of the abstraction tool was switched with the development and

evaluation of the Linked USDL mapping tool.

Furthermore, the development of the abstraction tool was divided into two

parts: the graphical editor and the import/export feature. The evaluation was

also divided into two parts because there was a need of evaluating the graphical

editor before moving on to the import/export feature.

Lastly, in the original schedule a week was expected in the Linked USDL

converter tool to set up the required tools for parsing RDF files in Ruby and

exporting data to files. Because the development of that tool was changed to

be after the development of the graphical editor, and because the graphical

editor also had a feature to import and export RDF code, there was a planned

week that changed from the Linked USDL converter tool to the import/export

feature of the graphical editor.

Regarding the proposed tasks, the only relevant change was in the Linked

USDL converter tool. In the original schedule it was planned to be a tool for

exporting LSS-USDL models into Linked USDL, but after further considerations

that task was expanded to also include the feature of creating LSS-USDL models

based on Linked USDL code.

The resulting schedule, which corresponds to the actual execution of the

tasks, is shown in Figure A.2.

75

A
P
P
E
N
D
IX

A
.

S
C
H
E
D
U
L
E

Feb Mar Apr May Jun Jul

Service model development

Manual instances creation

Abstraction layer tool development

Instances creation with the tool

Import/Export feature development

Import/Export feature evaluation

Linked USDL converter tool development

Linked USDL converter tool evaluation

General improvements

Documentation

Final presentation preparation

Final presentation

Figure A.2: Gantt diagram of the actual execution of the tasks. Development tasks are shown in green, evaluation tasks

are shown in cyan and generic tasks are shown in gray.

7
6

B
Project documentation

This appendix shows the documentation of the two code repositories created

in the scope of this thesis. The first section is the documentation of the

LSS-USDL model’s repository1 and the second section is the documentation of

the graphical editor’s repository2. The links in the documentation are depicted

here as footnotes.

B.1 LSS-USDL

This work is licensed under a Creative Commons Attribution 3.0 Unported

License3.

Linked Service Systems for USDL (LSS-USDL) is an ontology for modeling

service systems in RDF. This brings many advantages to organizations that

make use of this ontology:

• The resulting service models may be used as documentation for the service

operations or to generate service descriptions for various stakeholders

• A freely available and complete service description presents a solid evidence

of an organization’s effort towards transparency

• After modeling a complete service system it is possible to identify previously

unknown bottlenecks and fail points and to study how to overcome them

• After all operations of a service system are identified it is possible to

execute automation tasks that can greatly reduce costs

• It is also possible to run simulations based on the service model, which

aid managerial and operational decisions

1https://github.com/rplopes/lss-usdl
2https://github.com/rplopes/lss-usdl editor
3http://creativecommons.org/licenses/by/3.0/

77

APPENDIX B. PROJECT DOCUMENTATION

• Because this ontology uses Semantic Web tools and integrates with the

Linked Data Cloud, a strong data integration is also ensured

• Service models may create custom service descriptions aimed at customers

that could be used in a generic online services marketplace

B.1.1 Model Explanation

B.1.1.1 6-Point Interaction Star

A service system can be expressed as the flow of its interactions. Service

interactions take place when any actor interacts with the service system. We

use the journalism interrogative pronouns (who, how, why, where, when, what)

to give a better context to service interactions.

The elements that represent each of those answers are, respectively, the role

of the actor that is interacting, the process that describes how the service works,

the goal behind why such an interaction is taking place, the location, the time

and the resources that enter or leave the service system during that interaction.

This contextualization of service interactions is the core of LSS-USDL. It is

called 6-point interaction star and can be viewed in the images directory of the

project.

B.1.1.2 Extending Interactions and Resources

For those familiarized with the service blueprint, it is also possible to further

describe an interaction based on its area of action. This means that an

interaction in LSS-USDL can be classified as customer interaction, onstage

interaction, backstage interaction and support interaction.

Resources may also be further described according to their nature. A resource

in LSS-USDL can be classified as a physical resource (such as a package), a

knowledge resource (such as a customer’s profile) or a financial resource (such

as a payment).

These classifications are depicted in the images directory of the project.

Note, however, that their use is not mandatory, and because they are defined

as SKOS concept schemes, you can replace them with your own.

B.1.1.3 Ontology Elements

A graph of the full ontology may be viewed in the images directory of the

project. This subsection explains its elements and their relations.

ServiceSystem is the entity that represents the service system that is

being modeled. A ServiceSystem is connected to an Interaction, which

represents service interactions, through the property hasInteraction.

78

B.1. LSS-USDL

Interaction is connected to the following elements:

• Role, which describes the role of the actor interacting with the service,

through the property isPerformedBy

• Process, which describes the process of the interaction, through the

property belongsToProcess

• Goal, which describes the goal behind the service interaction, through the

property hasGoal

• Location, which describes the interaction’s location, through the property

hasLocation

• Time, which holds the interaction’s temporal data, through the property

hasTime

• Resource, which describes the resources interacting with the service

system at that moment, through the properties receivesResource

(if it’s an input from outside), createsResource (if it was created

internally), consumesResource (if it was consumed internally) and

returnsResource (if it’s an output to outside)

These core elements can also be connected to other elements of the Linked

Data Cloud, in order to provide richer information and better disambiguations.

A Role can also be connected to a BusinessEntity of the ontology

GoodRelations4 through the property hasBusinessEntity. This makes it

possible to explain which company or other stakeholder is responsible for that

role.

A Process can be connected to a Process of the BPMN 2.05 ontology

through the property hasBPMN. This enables linking the service model with the

previously defined process model.

A Location can have a broader location through the property isLocatedIn.

This enables a hierarchy that lest us express knowledge such as ”Room A is

located in Building 1, therefore an interaction happening in Room A is also

happening in Building 1”. A Location can also be connected to a Feature

of the Geonames6 ontology through the property isLoationFrom to assign it

an unambiguous geographical meaning.

Time is connected to a TemporalEntity of the OWL-Time7 ontology

through the property hasTemporalEnity. This enables a very rich temporal

4http://www.heppnetz.de/ontologies/goodrelations/v1
5http://www.scch.at/en/Page56-8330.aspx
6http://www.geonames.org/ontology/documentation.html
7http://www.w3.org/TR/owl-time

79

APPENDIX B. PROJECT DOCUMENTATION

description, such as the duration of the interaction, its date or its temporal

relation to other interactions.

A Resource is connected to a QuantitativeValue of the ontology

GoodRelations through the property hasQuantitativeValue to assign it

values such as quantities, units, etc. It is also connected to a DBpedia8

Resource through the property hasDBpediaResource to get an unambiguous

semantic meaning.

B.1.2 Getting Started Tutorial

A service system modeled in LSS-USDL is represented by RDF statements. We

will use the Turtle notation because it’s cleaner and easy to read and edit.

The first step is to create a file that will hold the service model. For

an express mail delivery service system we may create the file maildelivery.ttl.

These are the RDF prefixes we need for this tutorial (you may add others and

remove any that you might not use):

1 @prefix : <http://genssiz.org/lss-usdl/expressmail#> . # this is the

prefix for our example, change the URL to match yours

2

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

6 @prefix lss-usdl: <http://genssiz.dei.uc.pt/lss-usdl#> .

The first element to add is the service system. We can use RDF properties

to give any element a label and a comment:

1 # Add the service system

2 :ExpressMailDelivery a lss-usdl:ServiceSystem;

3 rdfs:label "Express Mail Delivery";

4 rdfs:comment "A service system for delivering express mails".

Note that, if we were using the RDF/XML notation, the same data would

look like the following:

1 <lss-usdl:ServiceSystem rdf:about="#ExpressMailDelivery">

2 <rdfs:label>Express Mail Delivery</rdfs:label>

3 <rdfs:comment>A service system for delivering express mails</rdfs:

comment>

8http://dbpedia.org/

80

B.1. LSS-USDL

4 </lss-usdl:ServiceSystem>

Now we can start adding interactions. Every time we add an interaction, it

should be added to the service system’s list of interactions:

1 # Change the service system

2 :ExpressMailDelivery a lss-usdl:ServiceSystem;

3 rdfs:label "Express Mail Delivery";

4 rdfs:comment "A service system for delivering express mails";

5 lss-usdl:hasInteraction :CustomerCalls .

6

7 # Add the interaction

8 :CustomerCalls a lss-usdl:CustomerInteraction;

9 rdfs:label "Customer calls" .

That interaction still has no information, so the next step is to provide more

useful context data. For new entities we need to create them and make the

interaction point to them:

1 # Change the interaction

2 :CustomerCalls a lss-usdl:CustomerInteraction;

3 rdfs:label "Customer calls";

4 lss-usdl:hasGoal :SendMail;

5 lss-usdl:isPerformedBy :Sender;

6 lss-usdl:hasLocation :SenderHome .

7

8 # Add the goal

9 :SendMail a lss-usdl:Goal;

10 rdfs:label "Send mail" .

11

12 # Add the role

13 :Sender a lss-usdl:Role;

14 rdfs:label "Sender" .

15

16 # Add the location

17 :SenderHome a lss-usdl:Location;

18 rdfs:label "Sender’s home" .

For entities that have already been created we only need to point at them.

So if we create a new interaction performed by an actor with the role “sender”

we only need to point to it:

1 # Change the service system

2 :ExpressMailDelivery a lss-usdl:ServiceSystem;

81

APPENDIX B. PROJECT DOCUMENTATION

3 rdfs:label "Express Mail Delivery";

4 rdfs:comment "A service system for delivering express mails";

5 lss-usdl:hasInteraction :CustomerCalls,

6 :CustomerDeliversPackages .

7

8 # Add the interaction

9 :CustomerDeliversPackages a lss-usdl:CustomerInteraction;

10 rdfs:label "Customer delivers packages";

11 lss-usdl:isPerformedBy :Sender .

The code we have so far should now look like this:

1 @prefix : <http://genssiz.org/lss-usdl/expressmail#> .

2

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

6 @prefix lss-usdl: <http://genssiz.dei.uc.pt/lss-usdl#> .

7

8 :ExpressMailDelivery a lss-usdl:ServiceSystem;

9 rdfs:label "Express Mail Delivery";

10 rdfs:comment "A service system for delivering express mails";

11 lss-usdl:hasInteraction :CustomerCalls,

12 :CustomerDeliversPackages .

13

14 :CustomerCalls a lss-usdl:CustomerInteraction;

15 rdfs:label "Customer calls";

16 lss-usdl:hasGoal :SendMail;

17 lss-usdl:isPerformedBy :Sender;

18 lss-usdl:hasLocation :SenderHome .

19

20 :CustomerDeliversPackages a lss-usdl:CustomerInteraction;

21 rdfs:label "Customer delivers packages";

22 lss-usdl:isPerformedBy :Sender .

23

24 :SendMail a lss-usdl:Goal;

25 rdfs:label "Send mail" .

26

27 :Sender a lss-usdl:Role;

28 rdfs:label "Sender" .

29

30 :SenderHome a lss-usdl:Location;

31 rdfs:label "Sender’s home" .

This was just a short getting start guide to explain how to use the LSS-

USDL ontology to model service systems. The full code of this express mail

delivery example is available in the use cases directory of the project, among

with other examples to help you understand how to use this ontology.

82

B.2. LSS-USDL EDITOR

B.1.3 Useful links

• LSS-USDL Editor9: Open source repository of the LSS-USDL graphical

editor.

• USDL Incubator Group10: LSS-USDL is part of the research for service

systems by the USDL research group.

• Linked USDL11: Similar project, focusing on service descriptions for cus-

tomers. The third use case found in LSS-USDL’s repository shows a service

system modeled both in LSS-USDL and Linked USDL.

• Linked USDL core12: Repository for the core module of Linked USDL.

The other modules may be found under the same Github profile.

• Semantic Web13: Technologies such as RDF are a core component of

LSS-USDL.

B.2 LSS-USDL Editor

This work is licensed under a Creative Commons Attribution 3.0 Unported

License14.

Linked Service Systems for USDL (LSS-USDL)15 is an ontology for modeling

service systems in RDF. This is a graphical editor for LSS-USDL instances

developed in Ruby on Rails. Its goal is to provide an abstranction to model

service systems without having to edit RDF code and also to present a visual

representation of modeled serivce systems. A deployed version for demonstration

purposes is available at http://lss-usdl-editor.herokuapp.com.

B.2.1 How to set up

This webapp was developed in Ruby, using the framework Ruby on Rails. So if

you don’t have Ruby installed in your computer, you should install it. Follow

this link16 for all the information on how to install Ruby on your platform.

9https://github.com/rplopes/lss-usdl editor
10http://www.w3.org/2005/Incubator/usdl
11http://www.linked-usdl.org/
12https://github.com/linked-usdl/usdl-core
13http://semanticweb.org/wiki/Main Page
14http://creativecommons.org/licenses/by/3.0/
15https://github.com/rplopes/lss-usdl
16http://www.ruby-lang.org/en/downloads/

83

APPENDIX B. PROJECT DOCUMENTATION

This application is versioned in Git, so if you don’t have Git installed, you

should also install it. Follow this link17 for all the information on how to install

Git on your platform.

If you want to run this application on your computer and not on a production

server, you also need to install the database SQLite, to store the information

even when you exit the editor. Follow this link18 for the installation instruc-

tions. If you are configuring a production environment, then you should install

PostgreSQL19 instead.

The first step to set up this app on your computer is to clone the Git

repository. To do so, type the following in your terminal:

1 git clone git@github.com:rplopes/lss-usdl_editor.git

This will copy all the necessary files to the directory lss-usdl editor.

To go to that directory:

1 cd lss-usdl_editor

Now you need to install the required dependencies. If you don’t have the

Bundler gem installed:

1 gem install bundler

Now to install all other required gems just type:

1 bundle install

In order to save data we need to have a database and the right schema.

We use the SQLite database because it is great for lightweight usage. If you

are setting up a production environment, then the database is PostgreSQL. The

required commands to generate the database and schema are:

1 rake db:create

2 rake db:migrate

17http://git-scm.com/
18http://www.sqlite.org/
19http://www.postgresql.org/

84

B.2. LSS-USDL EDITOR

Now everything is set. To start the application type:

1 rails server

B.2.2 Useful links

• Linked Service Systems for USDL20: Open source repository of the LSS-

USDL model.

• USDL Incubator Group21: LSS-USDL is part of the research for service

systems by the USDL research group.

• Linked USDL22: Similar project, focusing on service descriptions for cus-

tomers. The third use case found in LSS-USDL’s repository shows a service

system modeled both in LSS-USDL and Linked USDL.

• Linked USDL core23: Repository for the core module of Linked USDL.

The other modules may be found under the same Github profile.

• Semantic Web24: Technologies such as RDF are a core component of

LSS-USDL.

20https://github.com/rplopes/lss-usdl
21http://www.w3.org/2005/Incubator/usdl
22http://www.linked-usdl.org/
23https://github.com/linked-usdl/usdl-core
24http://semanticweb.org/wiki/Main Page

85

