

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 1/15

Unified Service Description Language (USDL)
Functional Module

February 28, 2011
Last Changed: May 24, 2011

Abstract. This document describes the Functional Module in the third version of the Unified Service
Description Language (USDL). USDL was developed as a holistic approach to describe entities provisioned
into service networks; an approach, which considers and connects business, operational (functional) and
technical aspects of service description. The Functional Module allows capturing the business functions and
capabilities of a service.

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 2/15

Table of Contents

Acknowledgements .. 3
Terms of Use Agreement .. 4
1 Introduction ... 6

About this document ... 7
2 Overview .. 7

2.1 Introduction to Functional Module ... 7
2.2 General Module Information .. 8
2.3 Module Dependencies .. 8

3 Functional Module: Model... 11
3.1 Function .. 11
3.2 Parameter ... 14
3.3 Fault .. 15
3.4 FunctionalOption... 15

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 3/15

Acknowledgements

The information in this document details a publicly released specification of the Unified Service
Description Language (USDL) for dissemination and further exploitation through the Internet of
Services Community in accordance with the terms set forth below. This document does not represent
any prior commitment for standardization or implementation of any portion of this specification by
SAP.

The information in this document was developed through the following publicly co-funded research
projects THESEUS/TEXO, Australian Smart Services CRC, Premium Services, SLA@SOI.

THESEUS/TEXO is research project funded by the German Federal Ministry for Economics and
Technology.

Premium Services is research project funded by the German Federal Ministry for Education and
Research.

Australian Smart Services CRC is research and development partnership funded by the private sector
and governments under the Australian Government’s Cooperative Research Centre program.

SLA@SOI is a research project funded by the European Commission under the 7th Framework
Programme.

The contributing authors are: Alistair Barros (SAP), Christian Baumann (SAP), Anis Charfi (SAP),
Steffen Heinzl (SAP), Tom Kiemes (SAP), Uwe Kylau (SAP), Norman May (SAP), Oliver Müller (SAP,
ERCIS Münster1), Francesco Novelli (SAP), Daniel Oberle (SAP), Philip Robinson (SAP), Benjamin
Schmeling (SAP), Wolfgang Theilmann (SAP), Heiko Witteborg (SAP).

1 European Research Center for Information Systems at the Westfälische Wilhelms-Universität Münster

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 4/15

Terms of Use Agreement

IMPORTANT- PLEASE READ CAREFULLY: THIS TERMS OF USE AGREEMENT (“AGREEMENT”) IS A
BINDING AGREEMENT BETWEEN SAP AG, A GERMAN COMPANY WITH OFFICES AT DIETMAR-HOPP-
ALLEE 16, 69190 WALLDORF, GERMANY (“SAP”), AND YOU, BEING EITHER AN INDIVIDUAL OR
SINGLE LEGAL ENTITY (“YOU” OR “YOUR”) REGARDING YOUR USE OF THIS DOCUMENT AND ANY
INFORMATION CONTAINED THEREIN (“MATERIAL”):

BY DOWNLOADING, COPYING, OR OTHERWISE USING THE MATERIAL, YOU AGREE TO BE BOUND
BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT,
DO NOT DOWNLOAD, COPY, OR USE THE MATERIAL.

IF YOU ARE DOWNLOADING, COPYING, OR USING THE MATERIAL ON BEHALF OF YOUR EMPLOYER
OR A S A CONSULTANT OR AGENT OF A THIRD PARTY (COLLECTIVELY “YOUR COMPANY”), YOU
REPRESENT AND WARRANT THAT YOU HAVE THE AUTHORITY TO ACT ON BEHALF OF AND BIND
YOUR COMPANY TO THE TERMS OF THIS AGREEMENT AND ANY REFERENCE TO YOU OR YOUR
SHALL ALSO INCLUDE YOUR COMPANY.

1. “SAP ENTITY/ENTITIES” shall mean SAP’s affiliates and its subsidiaries, defined as
corporations or other entities of which SAP owns, either directly or indirectly, more than fifty
percent (50%) of the stock or other equity interests.

“SAP SOFTWARE” shall mean the software products of SAP and/or SAP ENTITIES marketed
and licensed by SAP and/or SAP ENTITIES.

“INTELLECTUAL PROPERTY RIGHTS” means patents of any type, design rights, utility models
or other similar invention rights, copyrights, trademarks, service marks, trade secret or
confidentiality rights, and any other intangible property rights including applications for any
of the foregoing, in any country, arising under statutory or common law or by contract and
whether or not perfected, now existing or hereafter filed, issued, or acquired.

2. SAP grants YOU a nonexclusive, royalty-free, fully paid up, worldwide right to use, copy,
display, perform, transmit, translate and distribute the MATERIAL provided hereunder. This
shall include the right to reproduce, adapt, modify and to create derivative works of the
MATERIAL and to make, have made, offer to sell, sell, lease, or otherwise distribute any
product, and to practice any method, embodying such MATERIAL (including the right to
sublicense any of the foregoing rights).

SAP reserves the right to modify, change or discontinue the MATERIAL without notice at any
time.

YOU must not remove, overprint or deface any notice of copyright, trademark, logo, legend,
or other notice of ownership from any originals or copies of the MATERIAL accessed
hereunder. YOU agree to comply with the terms of the SAP Copyright Policy and those terms
found by clicking on Copyright/Trademark at the web page http://www.internet-of-
services.com.

FOR AVOIDANCE OF DOUBT, NOTHING IN THIS AGREEMENT SHALL BE DEEMED TO

(I) TO ASSUME OR PROVIDE FOR THE TRANSFER OF OWNERSHIP OF ANY INTELLECTUAL
PROPERTY RIGHTS. ALL INTELLECTUAL PROPERTY RIGHTS INCLUDED, WITHOUT
LIMITATION, COPYRIGHT IN ANY MATERIAL PROVIDED HEREUNDER, SHALL VEST IN
AND AT ALL TIMES REMAIN VESTED IN THE ORIGINATOR OF THAT INTELLECTUAL
PROPERTY RIGHT.

(II) GIVE YOU THE RIGHT TO MODIFY, COPY, DISTRIBUTE, TRANSMIT, DISPLAY,
PERFORM, REPRODUCE, PUBLISH, LICENSE, CREATE DERIVATIVE WORKS FROM,

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 5/15

TRANSFER; OR SELL ANY SAP SOFTWARE OR OTHER PRODUCT FOR ANY REASON
UNLESS OTHERWISE PERMITTED BY SAP.

3. Any MATERIAL made available hereunder is provided to YOU “as is”. SAP does not guarantee
or warrant any features or qualities of the MATERIAL or give any undertaking with regard to
any other quality. No warranty or undertaking shall be implied by YOU from any published
MATERIAL except to the extent SAP has expressly confirmed such warranty or undertaking in
writing. Warranties are validly given only with the express written confirmation of SAPs
management.

SAP does not represent or endorse the accuracy or reliability of any MATERIAL provided
hereunder. SAP shall not be liable for damages caused by the use of the MATERIAL, unless
such damages have been caused by SAPs willful misconduct.

TO THE EXTENT ALLOWABLE BY APPLICABLE LAW, SAP AND ITS AFFILIATES, SUBSIDIARIES,
OFFICERS, EMPLOYEES, AGENTS, PARTNERS, AND LICENSORS ARE NOT LIABLE TO YOU FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, CONSEQUENTIAL, OR EXEMPLARY
DAMAGES, INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS, REVENUE,
GOODWILL, USE, DATA, OR OTHER INTANGIBLE LOSSES (EVEN IF SAP HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES), HOWEVER CAUSED, WHETHER IN CONTRACT, TORT,
OR OTHERWISE, ARISING OUT OF OR RESULTING FROM: (i) THE USE OR THE INABILITY TO
USE THE MATERIAL; (ii) THE COST OF PROCUREMENT OF SUBSTITUTE GOODS AND SERVICES
ARISING OUT OF YOUR USE OR INABILITY TO USE THE MATERIAL; OR (iii) ANY OTHER
MATTER RELATING TO THE MATERIAL PROVIDED HEREUNDER. NOTWITHSTANDING
ANYTHING TO THE CONTRARY HEREIN, THESE LIMITATIONS SHALL NOT APPLY IN CASE OF
INTENT BY SAP AND IN CASE OF SAPS STATUTORY LIABILITY FOR PERSONAL INJURY AND
DEFECTIVE PRODUCTS.

4. This AGREEMENT represents the complete and full agreement. No verbal side-agreements
exist. Any changes to this AGREEMENT must be made in writing. This applies also to the
revocation of the requirements for the written form.

5. This AGREEMENT shall be governed by the laws of Germany. The sole place of jurisdiction for
all disputes arising directly in connection with this AGREEMENT shall be Karlsruhe, Germany.

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 6/15

1 Introduction

As outlined in the central document of this series “USDL Overview”, services are becoming the
backbone for electronic commerce. Especially the trend to provision IT-based services outside
company “firewalls” with the help of intermediaries is on the increase, as it allows organizations to
take new opportunities relatively quickly. In this context services are seen as tradable entities that
constitute a well-defined, encapsulated, reusable and business-aligned set of capabilities. The term
business service is used for such services, in order to distinguish them from other types, e.g., those
that are provided in a service-oriented IT infrastructure within an organization.

The Unified Service Description Language (USDL) defines a way to describe services from a business
and operational point of view and align this with the technical perspective. While the latter is
captured quite well by existing service description languages, USDL explicitly enables to express
business characteristics set by an organization. Their purpose is to provide means for consumers to
invoke and use business services, and for intermediaries to (re)use and repurpose services. A detailed
explanation of the scope and objectives of USDL is given in “USDL Overview”.

USDL on a whole is made up of a set of modules, each addressing different aspects of the overall
service description. Modularization was introduced to improve readability of the model, which
drastically grew in size compared to its predecessor. The modules have dependencies among each
other (shown in Figure 1), as they may reuse concepts from other modules. Currently, there are 9
modules in the set that constitutes USDL version 3.0.

Figure 1 Packages comprising the USDL model and their dependencies (represented as arrows)

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 7/15

About this document

The USDL meta-model is formally defined in Ecore (the meta-modeling language of EMF), with each
USDL module being captured in a separate package. This document is one in a series of USDL
documents and covers the Functional Module defined in package “functional”. The series also
includes:

 USDL Overview

 Module-specific documentation of the modules Foundation, Service, Participants, Technical,
Interaction, Pricing, Service Level , and Legal

The document only provides insights into the concepts of the Functional Module. For a complete
overview of USDL it is recommended to also consider the other documents of the series.

2 Overview

2.1 Introduction to Functional Module

One of the most integral parts of every service description is to express what it is that a service will
achieve for the beneficiaries involved (e.g. customers), i.e. its value proposition. In order to equally
enable the description of human and automated services, the Functional Module captures such
service functionality in a conceptual way. Conceptual in this context means independent of the ways
to technically access functionality (the how part). It is important to distinguish between these two
concepts, one being the subject of the service itself and the other being the service’s interface. The
reason is that a single service may be available, completely or in parts, via several interfaces.
Interface in this context means a set of concrete technologies through which the service can be
accessed. A simple example is an automated service that has a WSDL-based Web service interface
AND a REST interface.

Capability modeling usually takes a black-box view because it only captures the capability as
something that is externally visible and does not reveal how it is realized internally. Other
approaches aimed at modeling functionality, e.g. software function/component models and business
process models, provide a more detailed formalization. These approaches trace their roots to
structured systems analysis and design techniques, which introduced the principle of functional
decomposition, and offer a white-box or gray-box view depending on the level of detail provided
about the components/processes. For example, drilling down to the lowest level of atomic functions
performed in an organization, including information about the roles and systems involved, can be
regarded as a true white-box (sometimes also called glass-box) view. However, independent of how
much is revealed about internal structures, there is always a set of high-level functions at the top
which are offered to external parties as the capabilities of the organization.

It should be pointed out that capability modeling does not have to be limited to a flat, single-layer
model, as well. In fact, there are approaches that propose quite diverse hierarchical models, which
also capture interconnections between individual capabilities in terms of inputs, outputs and
exceptions. In using the principles of decomposition, they slightly extend their scope from black-box
to gray-box and thus share similarities with function or component modeling. The difference is that
they describe functionality from a business point of view, which does not go beyond a certain level of
detail, as opposed to an IT systems point of view that usually covers all aspects of
realization/implementation.

For USDL a mix of capability modeling and function modeling has been chosen. In particular, service
functionality is modeled as a set of hierarchical functions, which, at the top-most level, are externally
visible as capabilities. The reason for this conceptualization is that while most service consumers
might not care how functions offered as capabilities are structured internally, such information is of

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 8/15

interest to intermediaries aggregating, re-purposing and enriching a service. For example, a service
broker that provides payment and billing facilities supports fine-grained payment models, e.g.
collecting multiple apportions during service execution. In order for it to integrate such a payment
model correctly, it requires detailed knowledge about the structure of a capability.

As outlined previously, functions are the building blocks of rendering a capability and have a number
of inherent characteristics, some of which are similar to concepts of technical interfaces. Functions
produce outcome, e.g., something is created, transformed, delivered or destroyed. Functions are
performed by some actor (agent), who/which in doing so usually operates on one or more objects
(resources), consuming and producing some of the objects, while others are only affected. It is
furthermore common that actors use resources as tools to perform an action. In some cases it is
even necessary to describe conditions that have to hold before an action can be started, as well as
the effects that set in once the action is completed.

2.2 General Module Information

Parameters of the package that captures the module

 Namespace: http://internet-of-services.com/usdl/modules/functional

 Name: functional

The remainder of this section describes the classes and enumerations that are part of the package. A
class diagram of the package is depicted in Figure 2. The diagram shows which associations are
compositions and which ones are normal relationships. Associations not shown are assumed to be of
type composition by default.

2.3 Module Dependencies

In order to understand concepts from referenced USDL modules in detail, it is recommended to read
the following documents, which cover other USDL modules:

 Foundation

 Service

 Technical

A quick overview of the concepts used in the Functional Module is given below. This will avoid
extensive jumping between documents.

Note: Example fragments are provided for some of the classes. In order to improve readability
they are presented in XML-based pseudo syntax. This is NOT the official USDL syntax, which is still
under development. However, there currently exists a serialization format that is XMI-based and
supported through a USDL editor developed by SAP Research.

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 9/15

Name Type Module Description
NetworkProvisionedEntity Abstract

EClass
Service The central concept of the USDL model that

represents all entities provisioned into a service
network, e.g. service or service bundle

Service EClass Service A network-provisioned entity that offers
capabilities, which are exposed through a
technical interface

Description EClass Foundation A generic concept that provides various
information elements to describe USDL objects

Resource EClass Foundation A generic concept to represent classes of
concrete objects of various types, e.g. an
application, a system, a tool used to perform a
service, or an object a service is performed on

Artifact EClass Foundation A generic concept that allows to point to service
metadata outside of USDL, as well as arbitrary
documents, files, web pages, etc.

Option Abstract
EClass

Foundation A concept to define subsets of service features
and characteristics, in order to create variants of
a service and thus only offer parts of the service

Classification EClass Foundation A generic concept that can be used to classify
USDL objects into defined classification systems

TypeReference EClass Foundation A specific type of classification that represents a
class/type in a type system, e.g. XML schema
instance

VariableDeclaration EClass Foundation A concept to capture declaration of generic
variables

Condition EClass Foundation A generic concept to capture conditions, i.e. state
of objects that is associated with contextual
meaning

FunctionalElementRef Interface
EClass

Foundation The super type of all USDL classes capturing
abstract functionality that can be exposed
through a technical interface or parts thereof

ServiceLevelElementRef Interface
EClass

Foundation The super type of all USDL classes that represent
concepts to which a service level attribute may
apply

Interface EClass Technical A concept to capture relevant details about how
to technically access service functionality

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research,

Figure

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research,

Figure 2 Class diagram of the package

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research,

Class diagram of the package

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research,

Class diagram of the package that captures the

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research,

that captures the Functional

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com

Functional Module

research@sap.com, SAP AG

odule

10/15

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 11/15

3 Functional Module: Model

3.1 Function

Function is used to capture an informal description of what the service does, i.e., its core
functionality. A Function is an entity of activity that is performed by an actor (agent). Functions that
are available to external parties, e.g. partners in a business network, are understood as capabilities.
In this context a Function expresses the ability to perform a course of action, which ultimately
constitutes the service rendered to the consumer. Hence, a Service has to have at least one
capability; otherwise it cannot be considered a service.

Apart from this mandatory requirement, USDL offers much flexibility in describing the conceptual
side of a service. Functions can be decomposed explicitly into lower-level function blocks (sub-
functions), with the possibility to include descriptions of input/output parameters, faults and
conditions on each layer. If such a grey-box view is not desired, a traditional black-box approach can
be taken (only describing top-level functions, i.e. capabilities). Alternatively, USDL also offers a way
to provide a white-box view using the artifact concept to include a link to an external, possibly
complete, specification of the function’s implementation.

Furthermore, functions may be associated with resource descriptions in order to capture information
about the resource objects upon which actors operate during service execution (rendering of
capabilities), e.g., which they transform or manipulate in terms of appearance, state, etc. This might
also involve other resources, which are utilized during operation, e.g. as tools.

Example 1: Project Management

As part of project management the capability "create project time plan" is rendered. In a series of
several steps (individual sub-functions) the detailed time plan of the project is produced (output),
taking into account (input) parameters like project goals, activities / work items, available resources
(workforce, budget, ...), and project duration.

Example 2: Banking

A bank offers the capability “open term deposit account” which allows service consumers to open
such an account for 3, 6, or 12 months. The capability can be decomposed into several sub-functions
such as “collect personal details” or the actual opening of the account. Regarding the first function, a
required input is “personal details”, for instance.

Note: Entities that reference function objects contain these objects, respectively complete function
hierarchies. This ensures that top-level functions are known and interpreted correctly, i.e. as
capabilities.

 Ecore Type: EClass

 Interfaces: FunctionalElementRef, ServiceLevelElementRef

 Superclass: N/A

Function
Relations
Name Type Cardinality Description
names Description 1..* The set of names of the function; constraint:

type of description has to be set to name
subfunctions Function 0..* The set of functional building blocks of the

function
inputs Parameter 0..* The set of input parameters required for

performing the function
outputs Parameter 0..* The set of output parameters produced by

performing the function

https://wiki.wdf.sap.corp/wiki/display/SAPResearchBne/USDL_module_functional#USDL_module_functional-ActionParameter
https://wiki.wdf.sap.corp/wiki/display/SAPResearchBne/USDL_module_functional#USDL_module_functional-ActionParameter
https://wiki.wdf.sap.corp/wiki/display/SAPResearchBne/USDL_module_functional#USDL_module_functional-ActionParameter
https://wiki.wdf.sap.corp/wiki/display/SAPResearchBne/USDL_module_functional#USDL_module_functional-ActionParameter

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 12/15

preconditions Condition 0..* The set of conditions that have to be satisfied
before the function can be performed

postconditions Condition 0..* The set of conditions that hold after the
function is completed successfully

faults Fault 0..* The set of faults that may occur during
performing the function

affectedContextVariables Variable
Declaration

0..* The set of context variables that potentially
change as part of performing the function

affectedResources Resource 0..* The set of resources transformed/manipulated
as part of performing the function

utilizedResources Resource 0..* The set of resources that are utilized as part of
performing the function

implementation
Specifications

Artifact 0..* Link to a set of formal specifications that define
how the function is implemented

externalInterfaces Interface 0..* Reference to a set of separate (technical)
interfaces that allow access to a function;
constraint: function is a top-level function
(capability)

descriptions Description 0..* Set of (additional) descriptive information
about the function, possibly in multiple natural
languages

Examples (in pseudo concrete syntax)
<identifiableElement xsi:type=”service:Service”>
…
 <contextVariables>
 <variableDeclaration xsi:id=”accountID”>
 <name>
 <value> accountID </value>
 <type> name </type>
 </name>
 </variableDeclaration>
 …
 </contextVariables>

 <capabilities>
 <function xsi:id=”func345”>

 <names>
 <description>
 <value> Open Term Deposit Account </value>
 <type> name </type>
 <language> en </language>
 </description>
 </names>

 <externalInterfaces> intf8642 </externalInterfaces>

 <descriptions>
 <description>
 <value> Consumers are able to open a term deposit account for 3, 6, or 12 months. </value>
 <type> freetextLong </type>
 <language> en </language>
 </description>
 </descriptions>

 <affectedContextVariables> accountID, … </affectedContextVariables>

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 13/15

 <subfunctions>

 <!-- sub-function #1 -->

 <function xsi:id=”func433”>
 <names>
 <description>
 <value> Collect Personal Details </value>
 <type> name </type>
 <language> en </language>
 </description>
 </names>
 <descriptions>
 <description>
 <value> The first step of application is to collect personal details from the customer. </value>
 <type> freetextLong </type>
 <language> en </language>
 </description>
 </descriptions>
 <outputs>
 <parameter> … </parameter>
 </outputs>
 </function>
 …

 <!-- sub-function #3 -->

 <function xsi:id=”func435”>
 <names>
 <description>
 <value> Open Account </value>
 <type> name </type>
 <language> en </language>
 </description>
 </names>
 <descriptions>
 <description>
 <value> With all details collected, the account can be created and provisioned. </value>
 <type> freetextLong </type>
 <language> en </language>
 </description>
 </descriptions>
 <inputs>
 <parameter> … </parameter>
 <parameter> … </parameter>
 </inputs>
 <outputs>
 <parameter> … </parameter>
 </outputs>
 </function>

 </subfunctions>
 …
 </function>
 </capabilities>
…
</identifiableElement>

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 14/15

3.2 Parameter

Parameter is used to capture conceptual input to and output of functions. Parameters, on the one
hand, may be something very vague, like an idea. On the other hand, they can be something specific,
such as the architecture blueprint of a building.

 Ecore Type: EClass

 Interfaces: FunctionalElementRef, ServiceLevelElementRef, CopyrightProtectedElement

 Superclass: N/A

Parameter
Attributes
Name Type Cardinality Description
optional EBoolean 1 This flag indicates whether the parameter has

to be present when the function is invoked or
whether it can be omitted

sampleValues EString 0..* List of sample values given in an informal
description

Relations
Name Type Cardinality Description
names Description 1..* The set of names of the parameter; constraint:

type of description has to be set to name
typeReference Type

Reference
0..1 A pointer to a an entity in a type schema that

formally specifies the structure of the
parameter

descriptions Description 0..* Set of (additional) descriptive information
about the parameter, possibly in multiple
natural languages

Examples (in pseudo concrete syntax)
…
<function>
…
 <inputs>
 <parameter xsi:id=”param876”>
 <names>
 <description>
 <value> Personal Details </value>
 <type> name </type>
 <language> en </language>
 </description>
 </names>

 <typeReference>
 <classificationSystemID>
 http://www.moonbank.com/banking/businessObjects
 </classificationSystemID>
 <classID> Customer </classID>
 </typeReference>

 <descriptions>
 <description>
 <value> Personal details of a person </value>
 <type> freetextShort </type>
 <language> en </language>

https://wiki.wdf.sap.corp/wiki/display/SAPResearchBne/USDL_module_functional#USDL_module_functional-ActionParameter

Internet of Services and the Unified Service Description Language are initiated and supported by SAP Research, research@sap.com, SAP AG 15/15

 </description>
 </descriptions>
 </parameter>
…
 </inputs>
…
</function>

3.3 Fault

Fault is used to capture information about conceptual faults/exceptions that may occur when a
function is performed.

 Ecore Type: EClass

 Interfaces: FunctionalElementRef, ServiceLevelElementRef

 Superclass: N/A

Fault
Relations
Name Type Cardinality Description
names Description 1..* The set of names of the fault; constraint: type

of description has to be set to name
typeReference Type

Reference
0..1 A pointer to a an entity in a type schema that

formally specifies the structure of the fault
descriptions Description 0..* Set of (additional) descriptive information

about the fault, possibly in multiple natural
languages

Examples (in pseudo concrete syntax)

3.4 FunctionalOption

FunctionalOption is a concrete service option that defines a subset from the overall functionality
offered by a service, i.e. a subset of the service’s capabilities.

Please refer to the USDL Foundation for further details about the concepts of service options.

 Ecore Type: EClass

 Interfaces: N/A

 Superclass: Option

FunctionalOption
Relations
Name Type Cardinality Description
capabilities Function 1..* The subset of the service’s capabilities (i.e.

partial functionality), which are defined as an
option; constraint: only top-level functions to
be referenced

Examples (in pseudo concrete syntax)

https://wiki.wdf.sap.corp/wiki/display/SAPResearchBne/USDL_module_functional#USDL_module_functional-ActionParameter

	Acknowledgements
	Terms of Use Agreement
	1 Introduction
	About this document

	2 Overview
	2.1 Introduction to Functional Module
	2.2 General Module Information
	2.3 Module Dependencies

	3 Functional Module: Model
	3.1 Function
	3.2 Parameter
	3.3 Fault
	3.4 FunctionalOption

