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Two Statistical Paradoxes in the Interpretation of Group
Differences: Illustrated with Medical School Admission and

Licensing Data
Howard WAINER and Lisa M. BROWN

Interpreting group differences observed in aggregated data is
a practice that must be done with enormous care. Often the
truth underlying such data is quite different than a na� ve � rst
look would indicate. The confusions that can arise are so per-
plexing that some of the more frequently occurring ones have
been dubbed paradoxes. This article describes two of these
paradoxes—Simpson’s paradox and Lord’s paradox—and illus-
trates them in a single dataset. The dataset contains the score
distributions, separated by race, on the biological sciences com-
ponent of the Medical College Admission Test (MCAT) and
Step 1 of the United States Medical Licensing ExaminationTM

(USMLE). Our goal in examining these datawas to move toward
a greater understanding of race differences in admissions poli-
cies in medical schools. As we demonstrate, the path toward this
goal is hindered by differences in the score distributions which
gives rise to these two paradoxes. The ease with which we were
able to illustrate both of these paradoxes within a single dataset
is indicativeof how widespread they are likely to be in practice.

KEY WORDS: Group differences; Lord’s paradox; Medical
College Admission Test; Rubin’s model for causal inference;
Simpson’s paradox; Standardization;United States Medical Li-
censing Examination.
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To count is modern practice, the ancient method was to guess

—Samuel Johnson

Evidence may not buy happiness, but it sure
does steady the nerves

—paraphrasing Satchel Paige’s comment about money

1. INTRODUCTION

Modern policydecisions involvinggroup differences are both
based on, and evaluated by, empirical evidence. But the under-
standing and interpretation of the data that comprise such evi-
dence must be done carefully, for many traps await the unwary.
This essay explores two statisticalparadoxes that can potentially
mislead us and illustrates these paradoxes with data used in the
admission of candidates to medical school, and one measure of
the success of those admissions.

The � rst is known as Simpson’s paradox (Yule 1903) and ap-
pears when we look at the aggregate medical school application
rates by ethnicity.The secondparadox,which was � rst described
by Lord (1967), emerges when we try to estimate the size of the
effect of medical school training on students.

The balance of this essay is laid out as follows. Section
2 describes the data that form the basis of our investigation
and provides some summarizations. Section 3 describes Simp-
son’s paradox and demonstrates its existence within our data
and shows how to ameliorate its effects through the method of
standardization.Section 4 demonstrates Lord’s paradox and de-
scribes how its puzzling result can be understood by embedding
the analysis within Rubin’s model for causal inference. Section
5 concludes with a discussion of these � ndings.

2. THE DATA

There are many steps on the path toward becoming a physi-
cian. Two important ones that occur early on are tests. The � rst
test, the Medical College Admission Test (MCAT), is usually
taken during the junior or senior year of college and is one im-
portant element in gaining admission to medical school. The
second test is Step 1 of the United States Medical Licensing
Exam (USMLE). Step 1 is the � rst of a three-part exam a physi-
cian must pass to become licensed in the United States. This
test is usually taken after the second year of medical school and
measures the extent to which an examinee understands and can
apply important concepts of the basic biomedical sciences. For
the purposes of this investigationwe examined the performance
of all black and white examinees whose most recent MCAT was
taken during the three-year period between 1993 and 1995. Two
samples of examinees tested during this time were used in the
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Table 1. Selected Medical School Application and Licensing Statistics

Frequencies

Last MCAT score Applied to medical Accepted at medical USMLE Step 1
all MCAT takers 1993–1995 school 1994–1996 school 1994–1996 test volumes 1996–1998

MCAT-BS score Black White Total Black White Total Black White Total Black White Total

3 or less 1,308 1,168 2,476 404 238 642 8 1 9 6 1 7
4 1,215 2,094 3,309 482 557 1,039 52 10 62 39 10 49
5 1,219 3,547 4,766 582 1,114 1,696 202 45 247 116 36 152
6 1,269 5,289 6,558 752 1,983 2,735 417 163 580 256 140 396
7 1,091 6,969 8,060 748 3,316 4,064 518 636 1,154 338 589 927
8 1,234 11,949 13,183 868 6,698 7,566 705 2,284 2,989 537 2,167 2,704
9 702 13,445 14,147 544 8,628 9,172 476 4,253 4,729 340 4,003 4,343

10 or more 660 29,752 30,412 511 20,485 20,996 475 14,244 14,719 334 12,786 13,120

Totals 8,698 74,213 82,911 4,891 43,019 47,910 2,853 21,636 24,489 1,966 19,732 21,698

Selected conditional probabilities

Probability of MCAT taker Probability of MCAT taker Probability of MCAT taker Probability of medical school
applying to medical school being accepted to medical school taking USMLE Step 1 acceptee taking USMLE Step 1

MCAT-BS score Black White Total Black White Total Black White Total Black White Total

3 or less 0.31 0.20 0.26 0.01 0.00 0.00 0.00 0.00 0.00 0.75 0.78
4 0.40 0.27 0.31 0.04 0.00 0.02 0.03 0.00 0.01 0.75 1.00 0.79
5 0.48 0.31 0.36 0.17 0.01 0.05 0.10 0.01 0.03 0.57 0.80 0.62
6 0.59 0.37 0.42 0.33 0.03 0.09 0.20 0.03 0.06 0.61 0.86 0.68
7 0.69 0.48 0.50 0.47 0.09 0.14 0.31 0.08 0.12 0.65 0.93 0.80
8 0.70 0.56 0.57 0.57 0.19 0.23 0.44 0.18 0.21 0.76 0.95 0.90
9 0.77 0.64 0.65 0.68 0.32 0.33 0.48 0.30 0.31 0.71 0.94 0.92

10 or more 0.77 0.69 0.69 0.72 0.48 0.48 0.51 0.43 0.43 0.70 0.90 0.89

Totals 0.56 0.58 0.58 0.33 0.29 0.30 0.23 0.27 0.26 0.69 0.91 0.89

analyses. The � rst sample of approximately83,000 scores com-
prises all black and white examinees whose most recent MCAT
was taken during this time. This sample includes all exami-
nees rather than being limited to only those applying to medical
school. Additionally, because the sample re� ects performance
of examinees who had taken the MCAT after repeated attempts,
the initial scores from low scoring examinees who repeated the
examination to improve their performance were not included.
This makes these average scores somewhat higher than those
reported elsewhere (http://www.aamc.org).

The funnel of medical school matriculation continued with
about 48,000 (58%) of those who took the MCAT actually ap-
plying to medical school; of these about 24,000 (51%) were
actually accepted. And � nally, approximately 22,000 (89%) of
the candidateswho were accepted to allopathicmedical schools,
sat for Step 1 three years after their last MCAT attempt. By lim-
iting our sample to those who entered medical school the year
after taking the MCAT and took Step 1 two years later, we have
excluded those who progressed through these steps in less typi-
cal amountsof time. But this seems like a plausibleway to begin,
and the conclusions we reach using this assumption should not
be very far from the truth.

Table 1 presents the distributions of MCAT-Biological Sci-
ences scores for two racial groups along with selected condi-
tional probabilities. (MCAT is a test that consists of four parts—
Verbal Reasoning, Physical Sciences, Biological Sciences, and
a Writing Sample. The BiologicalSciences score is the one that
correlatesmost highlywith subsequentperformance on Step 1 of
the USMLE, and so we used it as thestratifyingvariable through-

out our study. None of our conclusions would be changed if we
used an amalgam of all parts of the test, but the interpretations
could get more complex. Therefore henceforth when we use
the term “MCAT” we mean “MCAT BiologicalSciences.”) The
� rst column in the upper portion of Table 1 shows the MCAT
scores; we grouped some adjacent extreme score categories to-
gether because the sample sizes in the separate categories were
too small in one or the other of the two groups to allow reliable
inferences. The � rst section of the table shows the distributions
of MCAT scores by race for black and white candidates whose
most recent attempt was between 1993 and 1995. The second
and third sections present the number of examinees from each
group who applied to allopathic medical schools the following
year and the respective acceptance rates. The � nal section shows
the distributionof MCAT scores among those in our sample who
matriculated to medical school and took Step 1 of the USMLE
three years after their last MCAT attempt.

The bottom portion of Table 1 presents selected conditional
probabilitiesat each level of MCAT score that were derived from
the frequencies in the top portion in the indicated fashion.

For the purposes of this discussion there are three important
characteristics of Table 1: (1) the higher the MCAT score the
greater the likelihood of applying to medical school, being se-
lected, and eventually taking Step 1; (2) at every MCAT score
level theproportionof blackMCAT takers takingStep 1 is higher
than for white applicants; and (3) despite this, the Step 1 rates
for whites overall was higher than for blacks. If we have not
made any errors in our calculations, how do we account for this
remarkable result? Are black students sitting for the licensing
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Table 2. NAEP 1992 8th Grade Math Scores

Other
State White Black Nonwhite Standardized

Nebraska 277 281 236 259 271
New Jersey 271 283 242 260 273

Proportion of population

Nebraska 87% 5% 8%
New Jersey 66% 15% 19%

Nation 69% 16% 15%

exam with greater likelihood than whites? Or with lesser? This
is an example of Simpson’s paradox and in the next section we
discuss how it occurs and show how we can ameliorate its ef-
fects.

3. SIMPSON’S PARADOX

The seeming anomaly in Table 1 is not rare. It shows up fre-
quently when data are aggregated and is well known among
statisticians (e.g., Blyth 1972; Rinott and Tamm 2003; Samuels
1993; Simpson 1951; Wainer 1986; Westbrooke 1998). Indeed
we see it also in the probabilities of applying to medical school.
Let us examine another, simpler, example to help us understand
both how it occurs and what we can do to allow us to make
sensible inferences from such results.

As our secondexample, consider the results from the National
Assessment of Educational Progress shown in Table 2. We see
that 8th grade students in Nebraska scored six points higher in
mathematics than their counterparts in New Jersey. Yet we also
see that both white and black students do better in New Jersey.
Indeed, all other studentsdo better in New Jersey as well. How is
this possible?Once again it is an example of Simpson’s paradox.
Because a much greater percentage of Nebraska’s 8th grade stu-
dents (87%) are from the higher scoring white population than
in New Jersey (66%), their scores contribute more to the total.

Given these results, we could ask, “Is ranking states on such
an overall score sensible?” It depends on the question that these
scores are being used to answer. If the question is something
like “I want to open a business. In which state will I � nd a
higher proportion of high-scoring math students to hire?” this
unadjusted score is sensible. If, however, the questionof interest
is “I want to enroll my children in school. In which state are they
likely to do better in math?” a different answer is required. If
your children have a race (it does not matter what race), they are
likely to do better in New Jersey. If questions of this latter type
are the ones that are asked more frequently, it makes sense to
adjust the total to re� ect the correct answer. One way to do this
is through the method of standardization, in which we calculate
what each state’s score would be if it were based upon a common
demographic mixture. In this instance one sensible mixture to
use is that of the nation overall. Thus, after standardization the
result obtained is the score we would expect each state to have
if it had the same demographic mix as the nation. To create the
standardizedscore for New Jersey we multiply the average score
for each subgroup by their respective percentages in the nation,
for example, (283£0:69)+(242£0:16)+(260£0:15) = 273.
Because New Jersey’s demographic mix is not very different

Figure 1. A graph developed by Jeon, Chung, and Bae (1987) that
illuminates the conditions for Simpson’s paradox as well as how stan-
dardization ameliorates it.

from the nationalmix, its score is not affected much (273 instead
of 271), whereas becauseof Nebraska’s largelywhite population
its score shrinks substantially (271 instead of 277).

Simpson’s paradox is illuminated through a clever graphic
developed by Jeon, Chung, and Bae (1987) (and independently
reinvented by Baker and Kramer 2001). In Figure 1 the solid
line represents what Nebraska’s average score would be with
any proportionof white students.The solid pointat “87% white”
shows what the score was with the actual percentage. Similarly,
the dashed line shows what New Jersey’s average score would be
for any percentage of whites, with the unshaded point showing
the actual percentage. We can readily see how Nebraska’s aver-
age point is higher than New Jersey’s. The unshaded rectangle
represents what both states’ averageswould be with a hypotheti-
cal populationof 69% white—the standardizationmix. This plot
shows that what particular mixture is chosen for standardization
is irrelevant to the two state’s relative positions, because the two
states’ lines are parallel.

The use of standardization is not limited to comparing differ-
ent states with one another. Indeed it may be even more useful
comparing a state with itself over time. If there is a change in
educational policy (e.g., per pupil expenditure) standardization
to the demographic structure of the state at some � xed point
in time allows us to estimate the effect of the policy change
uncontaminated by demographic shifts.

Now we can return to the data about MCAT examinees in
Table 1 with greater understanding.Why is it that the overall rate
for taking Step 1 is lower for blacks than for white examinees,
when we see that the rate is higher for blacks (often markedly
higher) at each MCAT score level? The overall rate of 23% for
black students is caused by a combination of two factors: policy
and performance. For many policy purposes it would be well
if we could disentangle these effects. As demonstrated in the
prior example, one path toward clarity lies in standardization.
If we wish to compare the rates for black and white students
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Table 3. Distributions of Step 1 Rates by Ethnicity with
Standardized Totals

Standardized
Step 1 rates Percentage of Step 1 rates

MCAT score White Black Whites Blacks Whites Blacks

3 or less 0.1% 0.5% 1.6% 15.0% 0.0% 0.0%
4 0.5% 3.2% 2.8% 14.0% 0.0% 0.1%
5 1.0% 9.5% 4.8% 14.0% 0.0% 0.5%
6 2.6% 20.2% 7.1% 14.6% 0.2% 1.4%
7 8.5% 31.0% 9.4% 12.5% 0.8% 2.9%
8 18.1% 43.5% 16.1% 14.2% 2.9% 7.0%
9 29.8% 48.4% 18.1% 8.1% 5.4% 8.8%

10 or more 43.0% 50.6% 40.1% 7.6% 17.2% 20.3%

Total 26.6% 22.6% 26.6% 41.0%

that current policy generates we must rid the summary of the
effects of differential performance and estimate standardized
rates. Standardizedrates can be obtainedby multiplyingthe Step
1 rates of each stratum of both black and white students by
the score distribution of white students. Multiplying the two
columns of Step 1 rates in Table 3 by the score distribution
of whites (in bold) yields the two � nal columns, which when
summed are the standardized rates; standardized to the white
score distribution. Of course the white summary stays the same
27%, but the standardized Step 1 rate for black students is 41%.
We can use this information to answer the question:

If black students scored the same on the MCAT as white
students what proportion would go on to take Step 1?

Comparing the total Step 1 rates for blacks and whites after
standardization reveals that if black and white candidates per-
formed equally well on the MCAT, blacks would take Step 1
at a rate 54% higher than whites. The standardization process
also allows for another comparison of interest. The difference
between the standardized rate of 41% for blacks and the actual
rate of 23% provides us with the effect of MCAT performance
on Step 1 rates of black students. This occurs because white
students are more heavily concentrated at high MCAT scores,
which have a higher rate of taking Step 1. Standardization tells
us that if black students had that same MCAT distribution their
rate of taking Step 1 would almost double.

Standardization is not the only way to make sense of data that
displaysSimpson’s paradox. If we do not need to providea single
summary statistic for each group, it is often sensible to just report
the conditional means. Indeed this is a sensible approach when
one of the entities being compared is missing one or more of
the component groups. For example, if we substituted Montana
for Nebraska in the second example we could not standardize
because of the almost nonexistent size of non-Hispanic Blacks
in Montana. But we could compare the two states one-group-at-
a-time without misleading anyone.

4. LORD’S PARADOX

We have observed that the performance of the two groups on
the outcomevariable, the USMLE Step 1 score, dependson both
performance on the predictor variable, the MCAT score, and on

group membership. Faced with this observation it is natural to
ask:

How much does group membership matter in measuring the
effect of medical school?

What does this question mean? One plausible interpretation
would be to examine an individual’s rank among an incoming
class of medical students,and thenexamineher rank after receiv-
ing a major portion of her medical education. If her rank did not
change, we could conclude that the effect of medical school was
the same for that individualas it was for the typical medical stu-
dent. If we wish to measure the effect of medical school on any
group, we might compare the average change in ranks for that
group with another. But this is not the only plausible approach.
Alternativelywe might use the pre-medical school ranks as a co-
variate and examine the differences between the groups’ average
medical school rank after adjusting for the pre-medical school
rank. How we might do this and how we interpret the results is
the subject of this section. (We use ranks rather than test scores
to circumvent the problems generated by the two different tests
being scored on different scales and having very different relia-
bilities. It is not that such an alternative path could not be taken,
but we felt that for this illustration it would be cleaner, simpler,
and more robust to assumptions if we stuck with analyses based
on the order statistics.)

We begin the investigation by:

a. Drawing a random sample from the USMLE Step 1 takers
of 200 white examinees and 200 black examinees.

b. Then we rank these 400 examinees on both their MCAT
scores and their Step 1 scores.

c. Next we subtract each examinee’s rank on the Step 1 from
that person’s rank on the MCAT.

d. Then we calculate the average difference for white and for
black examinees.

We found that white examinees’ ranks improved, on average,
about 19 places. This was, of course, balanced by a decline of
19 places in rank among black examinees, or a total differential
effect of 38.

But, as we mentioned before, taking the difference in ranks is
not the only way to estimate this effect. Alternatively, we could
use the MCAT rank as a covariate and look at the ranks of the
individuals on the adjusted USMLE Step 1 (the residuals on
Step 1 ranks after a linear adjustment for MCAT score). When
we did exactly this we found that white examinees’Step 1 ranks,
after adjusting for MCAT scores, improved, on average, about 9
places,with black examinees’ ranks decliningthe same 9 places,
for a total differential effect of 18.

The results of these two analyses were substantiallydifferent.
Which is the right answer? This question was posed previously
by Fred Lord (1967) in a two-page article that clearly laid out
what has since become known as Lord’s paradox. He did not
explain it. The problem appears to be that the analysis of covari-
ance cannot be relied upon to properly adjust for uncontrolled
preexisting differences between naturally occurring groups. A
full explanationof the paradox � rst appeared fully 16 years later
(Holland and Rubin 1983) and relies heavily on Rubin’s model
for causal inference (Rubin 1974).
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Figure 2. A graphical depiction of Lord’s paradox showing the bivari-
ate distribution of weights in two dining rooms at the beginning and end
of each year augmented by the 45¯ line (the principal axis). The ovals
represent the bivariate scatter within each dining room.

The paradox, as Lord described it, was based on the following
hypothetical situation:

A large university is interested in investigating the effects on the students of
the diet provided in the university dining halls : : : . Various types of data are
gathered. In particular, the weight of each student at the time of his arrival in
September and his weight the following June are recorded. (p. 304)

Lord framed his paradox in terms of the analyses of two hy-
pothetical statisticians who come to quite different conclusions
from the data in this example.

The � rst statistician calculated the difference between each
student’s weight in June and in September, and found that the
average weight gain in each dining room was zero. This result
is depicted graphically in Figure 2 with the bivariate dispersion
within each dining hall shown as an oval. Note how the dis-
tribution of differences is symmetric around the 45¯ line (the
principal axis for both groups) that is shown graphically by the
distribution curve re� ecting the statistician’s � ndings of no dif-
ferential effect of dining room.

The second statistician covaried out each student’s weight
in September from his/her weight in June and discovered that
the average weight gain was greater in Dining Room B than
Dining Room A. This result is depicted graphically in Figure 3.
In this � gure the two drawn-in lines represent the regression lines
associated with each dining hall. They are not the same as the
principal axes because the relationship between September and
June is not perfect. Note how the distributionof adjustedweights
in June is symmetric around each of the two different regression
lines.From this result the secondstatisticianconcludedthat there
was a differential effect of dining room, and that the average size
of the effect was the distance between the two regression lines.

So, the � rst statistician concluded that there was no effect of
dining room on weight gain and the second concludedthere was.
Who was right? Should we use change scores or an analysis of
covariance? To decide which of Lord’s two statisticians had the
correct answer requires that we make clear exactly what was

the question being asked. The most plausible question is causal,
“What was the causal effect of eating in Dining Room B?” But
causal questions are always comparative (The comedian Henny
Youngman’s signature jokeaboutcausal inferencegrew from his
reply to “How’s your wife?” He would then quip, “Compared
to what?”) and the decision of how to estimate the standard of
comparison is what differentiates Lord’s two statisticians. Each
statisticianmade an untestableassumptionabout the subjunctive
situationof what would have been a student’s weight in June had
thatstudentnot been in the diningroom of interest.This devolves
directly from the notion of a causal effect being the difference
between what happened under the treatment condition versus
what happened under the control condition.

The fundamentaldif� cultywith causal inference is thatwe can
never observe both situations. Thus, we must make some sort
of assumption about what would have happened had the person
been in the other group. In practice we get hints of what such
a number would be through averaging and random assignment.
This allows us to safely assume that, on average, the experimen-
tal and control groups are the same.

In Lord’s setup the explicationis reasonablycomplex.To draw
his conclusion the � rst statistician makes the implicit assump-
tion that a student’s control diet (whatever that might be) would
have left the student with the same weight in June as he had in
September. This is entirely untestable. The second statistician’s
conclusions are dependent on an allied, but different, untestable
assumption.This assumption is that the student’s weight in June,
under the unadministered control condition, is a linear function
of his weight in September. Further, that the same linear function
must apply to all students in the same dining room.

How does this approach help us to untangle the con� icting
estimates for the relative value of medical school for the two
racial groups? (Note: This section borrows heavily from Holland
and Rubin (1983, p. 5–8) and uses their words as well as their

Figure 3. A graphical depiction of the second part of Lord’s paradox:
the result obtained by covarying out each student’s September weight.
The ovals represent the bivariate scatter within each dining room, the
lines drawn in are the within-dining hall regression lines, and the distri-
butions drawn in represent the distribution of residuals of June weight
after adjusting for September’s.
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ideas.) To do this requires a little notation and some algebra. The
elements of the model are:

1. a population of units, P ;
2. an “experimental manipulation,”with levels T and C and

its associated indicator variable, S;
3. a subpopulation indicator, G;
4. an outcome variable, Y ; and
5. a concomitant variable, X .

The purpose of the model is to allow an explicit description of
the quantities that arise in three types of studies:

a. descriptive studies,
b. uncontrolled causal studies, and
c. controlled causal studies.

A descriptivestudyhas no experimentalmanipulationso there
is only one version of Y and X and no treatment indicator vari-
able S.

Controlled and uncontrolled causal studies both have exper-
imental manipulations and differ only in the degree of control
that the experimenter has over the treatment indicator, S. In a
controlled causal study, the values of S are determined by the
experimenter and can depend on numerous aspects of each unit
(e.g., subpopulation membership, values of covariates) but not
on the value of Y , because that is observed after the values of S
are determined by the experimenter. In an uncontrolled causal
study the values of S are determined by factors that are beyond
the experimenter’s control. Critical here is the fact that in a con-
trolled study S can be made to be statistically independent of
YC and YT whereas in an uncontrolled causal study this is not
true.

The causal effect of T on Y (relative to C) for each unit
in P is given by the difference YT ¡ YC . The average causal
effect of T versus C on Y in P is E(YT ¡ YC), which equals
E(YT ) ¡ E(YC). This shows us how the unconditional means
of YT and YC over P have direct causal interpretations. But
because T and C are usually not observable on the same unit,
E(YT ) and E(YC) are not typically observable.

In a causal study, the value of Y that is observed on each
unit is YS , so that when S = T , YT is observed and when
S = C , YC is observed. The expected value of Y for the “treat-
ment group” is E(YT jS = T ) and for the “control group”
is E(YC jS = C). There is no reason to believe that E(YT )
should equal E(YT jS = T ), or that E(YC) should equal
E(YC jS = C). HenceneitherE(YT jS = T ) norE(YC jS = C)
have direct causal interpretation.

Consider that E(YT jS = T ) and E(YT ) are related through

E(YT ) = E(YT jS = T )P (S = T )

+E(YT jS = C)P (S = C): (1)

There is the obvious parallel version connecting E(YC jS = T )
with E(YC). The second term of (1) is not observable. This
makes explicit the basis of our earlier assertion about the short-
comings of E(YT jS = T ) and E(YC jS = C) for making direct
causal interpretations.

Note that Equation (1) involves the average value of YT ,
among those units exposed to C . But E(YT jS = C) and its

parallel E(YCjS = T ) can never be directly measured except
when YT and YC can both be observed on all units. This is what
Holland and Rubin (1983, p. 9) termed “the fundamental prob-
lem of causal inference.”

With this model laid out, let us return to the problem of mea-
suring the differential effect of medical school.

Study Design

P : 400 medical students in the years speci� ed
T : Went to medical school
C : Unknown

Variables Measured

G: Student Race (W = 1, B = 2)
X : The rank of a student on the MCAT
Y : The rank of a student on Step 1 of the USMLE

This layout makes clear that the control condition was
unde� ned—no one was exposed to C (S = T for all students)—
and so any causal analysis must make untestable assumptions.
As is perhaps obvious now, the two different answers we got to
the same question must have meant that we made two different
untestable assumptions. This will become visible by making the
inference explicit.

The causal effect of medical school for black and white stu-
dents is

Di = E(YT ¡ YCjG = i) i = 1; 2; (2)

and so the difference of average causal effects is

D = D1 ¡ D2: (3)

This can be expressed in terms of individual subpopulation av-
erages,

D = [E(YT jG = 1) ¡ E(YC jG = 1)]

¡ [E(YT jG = 2) ¡ E(YC jG = 2)]: (4)

We can pro� tably rearrange this to separate the observed YT

from the unobserved YC

D = [E(YT jG = 1) ¡ E(YT jG = 2)]

¡ [E(YC jG = 1) ¡ E(YC jG = 2)]: (5)

The � rst approach estimated the effect of medical school by just
lookingat the difference in the rankson MCAT and Step 1.Doing
so made the (entirely untestable) assumption that an individual’s
response to the control condition, whatever that might be, is
given by his/her rank on the MCAT

YC = X (6)

yielding,

E(YC jG = i) = E(X jG = i): (7)

The second approach estimated the effect of medical school by
using the students’ rank on the MCAT as a covariance adjust-
ment, which corresponds to the following two conditional ex-
pectations:

E(YT jX; G = i) i = 1; 2; (8)
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and the mean, conditional, improvement in rank in group i at X
is

Ui(X) = E(YT ¡ XjX; G = i) i = 1; 2: (9)

Hence, the difference in these conditional ranks at X is

U (X) = U1(X) ¡ U2(X): (10)

The second analysis assumes that the conditional expectations
in (8) are linear and parallel. Thus, we can write

E(YT jX; G = i) = ai + bX i = 1; 2 (11)

Substituting into (9) yields

Ui(X) = ai + (b ¡ 1)X i = 1; 2: (12)

And hence (10) simpli� es to

U (X) = a1 ¡ a2: (13)

The second approach correctly interprets U (X) as the average
amount that a white student’s (G = 1) rank will improve over
a black student (G = 2) of equal MCAT score. This is descrip-
tively correct, but has no direct causal interpretation since U is
not directly related to D. To make such a connection we need to
make the untestable assumption, related to (6) that

YC = a + bX: (14)

Where b is the common slope of the two within-groups regres-
sion lines in (11). This allows the interpretation of U (X) as the
difference in the causal effects D in Equation (3).

Both of these assumptions seem to stretch the bounds of
credulity, but (14) seems marginally more plausible. However
deciding this issue was not our goal. Instead we wished to show
how subtle an argument is required to unravel this last paradox
in the investigation of group differences. The interested reader
is referred to Holland and Rubin (1983) or Wainer (1991) for
a fuller description of how Rubin’s model of causal inferences
helps us to understand this subtle paradox.

5. CONCLUSION

“What we don’t know won’t hurt us,
it’s what we do know that ain’t”

—Will Rogers

This essay, and the research behind it, has two goals. The � rst
is to publicize more broadly the pitfalls that await those who try
to draw inferences from observed group differences. The second
is to provide analytic tools to allow the construction of bridges
over those pitfalls.

Group differences must be examined if we wish to evalu-
ate empirically the ef� cacy of modi� cations in policy. But such
comparisons, made na� vely, are very likely to lead us astray.

Ridding ourselves of Simpson’s paradox by disaggregation,

or through the use of standardization is straightforward. But
we must always remember that there may be another, unno-
ticed, variable that could reverse things again. Inferences must
be made carefully. The only reasonably certain way to be sure
that strati� cation by some unknown variable will not reverse
your inference is to have random assignment to groups. When
assignment is not random the possibility of Simpson’s paradox
is always lurking in the background.y

Lord’s paradox is the latest of this pair. It occurs when data
analysts use their favorite method to assess group differences
without careful thought about the question they are asking. It
is, by far, the most dif� cult paradox to disentangle and requires
clear thinking. It also emphasizes how the assessment of group
differences often entails making untestable assumptions. This
too shouldgiveuspausewhen we try to draw strong conclusions.

y Benjamin Disraeli (1804–1881) was twice prime minister of England (1868,
1874–1880). At an earlier time in his career he was an outspoken critic of Sir
Robert Peel’s (1788–1850) free-trade policies, and to support his criticism he
offered data defending the Corn Laws (1845). Peel offered counter data that
justi� ed his desire to repeal them. The two sets of data seemed contradictory,
and, it is said that Disraeli, not knowing about Simpson’s Paradox (or the use
of standardization to correct it), exclaimed out of frustration, “Sir, there are lies,
damn lies, and statistics.”

[Received April 2003. Revised February 2004.]
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